Study on Time-Dependent Bending Response of IPMC Actuator

  • Hyung-Man KimEmail author
  • N. D. Vinh
Part of the Engineering Materials book series (ENG.MAT.)


Ionic polymer metal composite (IPMC) actuators have considerable potential for a wide range of applications. Although IPMC actuators are widely studied for their electromechanical properties, most studies have been conducted at the ambient conditions. The electromechanical performance of IPMC actuators at higher temperature is still far from understood. IPMCs are polymer-based soft composites that can be designed as soft actuators and sensors. IPMC actuators have several unique properties, including low density, large bending strain, low noise, high resilience, and low operation voltage; which make their application more practical compare to many of their metal- or ceramic-based counterparts. This chapter is a summary of all recent findings and current state-of-the art manufacturing techniques, phenomenological laws and mechanical and electrical characteristics. The time dependent bending characteristics of IPMC actuators has been widely studied, experimentally, and theoretically, as artificial muscles for biomedical applications, biomimetic micro-robotics, and harsh environment tools. The first one of contents presents a brief summary of the fundamental properties and characteristics of IPMC. The following addresses in detail the electronic and electromechanical characteristics of IPMCs, the phenomenological Modelling of the underlying sensing and actuation mechanisms in IPMCs and the potential application areas for IPMCs.


Ionic polymer metal composite IPMC actuator Actuation mechanisms Time dependent bending characteristics Electromechanical characteristics Modelling Experiment Application 

List of Abbreviation


Arbitrary Lagrangian Eulerian


Argon Laser Trabeculoplasty


Backward Differential Formulation


Carbon Nano Tube


Direct Current


Dipeptidyl Peptidase-4


Electro Active Ceramic


Electro Active Polymer


Glucagon-Like Peptide


Graphic User Interface


Fluid-Structure Interaction


High-Density Lipid


Insulin-Dependent Diabetes Mellitus


Ionic Polymer Metal Composite


Intraocular Pressure


Insulin Unit


MUltifrontal Massively Parallel Sparse direct Solver


Non-Insulin-Dependent Diabetes Mellitus


Poly Acrylic Acid


Poly Acrylicamido Methyl Propane Sulfonate


Partial Differential Equation


Parallel Direct Sparse Solver


Poly Vinyl Alcohol


Shape Memory Alloy


Tetra Butyl Ammonium



This work was supported partly by Basic Science Research Program (No. 2015R1D1A1A02060006) and partly by Korea-Canada Cooperative Development Program (No. 2018K1A3A1A74064262) funded by the National Research Foundation of Korea (NRF).


  1. 1.
    Chu, W.-S., Lee, K.-T., Song, S.-H., Han, M.-W., Lee, J.-Y., Kim, H.-S., Kim, H.-S., Kim, M.-S., Park, Y.-J.: Review of biomimetic underwater robots using smart actuators. Int. J. Precis. Eng. Man. 13(7), 1281–1292 (2012). Scholar
  2. 2.
    Frecker, M.I.: Recent advances in optimization of smart structures and actuators. J. Intell. Mater. Syst. Struct. 14(4–5), 207–216 (2003). Scholar
  3. 3.
    Ranjbarzadeh, S.: Modeling, simulation, and applications of ionic polymer metal composites. Dissertation, Universidade Federal do Rio de Janeiro (2017)Google Scholar
  4. 4.
    Shahinpoor, M., Bar-Cohen, Y., Simpson, J.O., Smith, J.: Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators, and artificial muscles-a review. Smart Mater. Struct. 7(6), R15 (1998). Scholar
  5. 5.
    Bar-Cohen, Y. (ed.): Electroactive polymer (EAP) actuators as artificial muscles: reality, potential, and challenges, 2nd edn. SPIE press, USA, Washington (2004)Google Scholar
  6. 6.
    Osada, Y., Okuzaki, H., Hori, H.: A polymer gel with electrically driven motility. Nature 355(6357), 242–245 (1992). Scholar
  7. 7.
    Shahinpoor, M., Kim, K.J.: Ionic polymer metal composites: I Fundamentals. Smart Mater. Struct. 10, 819–833 (2001). Scholar
  8. 8.
    Kim, K.H., Shahinpoor, M.: Ionic polymer metal composites—II manufacturing techniques. Smart Mater. Struct. 12, 65–69 (2003). Scholar
  9. 9.
    Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: III modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13, 1362–1388 (2004). Scholar
  10. 10.
    Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: IV industrial and medical applications. Smart Mater. Struct. 14, 197–214 (2005). Scholar
  11. 11.
    Paquette, J.W., Kim, K.J.: Ionomeric electroactive polymer artificial muscle for naval applications. IEEE J. Ocean. Eng. 29, 729–737 (2004). Scholar
  12. 12.
    Shahinpoor, M.: New effect in ionic polymeric gels: the ionic flexogelectric effect. In: Proceeding of PIE 1995 North American Conference on Smart Structures and Materials, San Diego, California, vol. 2441, paper no. 05 (1995)Google Scholar
  13. 13.
    Shahinpoor, M.: Microelectro-mechanics of ionic polymeric gels as synthetic robotic muscles. In: Proceeding SPIE North American Conference on Smart Structures and Materials, Orlando, Florida, vol. 2189, pp. 265–274 (1994)Google Scholar
  14. 14.
    Shahinpoor, M., Adolf, D., Segalman, D., Witkowski, W.: Electrically controlled polymeric gel actuators. US Patent Specification 5250167 (1993)Google Scholar
  15. 15.
    Shahinpoor, M.: Continuum electromechanics of ionic polymeric gels as artificial muscles for robotic applications. Smart Mater. Struct. 3, 367–372 (1993). Scholar
  16. 16.
    Nemat-Nasser, S., Li, J.Y.: Electromechanical response of ionic polymer–metal composites. J. Appl. Phys. 87, 3321–3331 (2000). Scholar
  17. 17.
    Nemat-Nasser, S.: Micromechanics of actuation of ionic polymer–metal composites. J. Appl. Phys. 92, 2899–3331 (2002). Scholar
  18. 18.
    Shahinpoor, M., Kim, K.J.: Mass transfer induced hydraulic actuation in ionic polymer–metal composites. J. Intell. Mater. Syst. Struct. 13, 369–376 (2002). Scholar
  19. 19.
    Newbury, K.M., Leo, J.D.: Linear electromechanical model of ionic polymer transducers-part I Model development. J. Intell. Mater. Syst. Struct. 14, 333–342 (2003). Scholar
  20. 20.
    Nemat-Nasser, S., Wu, Y.: Comparative experimental study of the ionic polymer–metal composites with different backbone ionomers and in various cation forms. J. Appl. Phys. 93, 5255–5267 (2003). Scholar
  21. 21.
    Weiland, L.M., Leo, D.J.: Computational analysis of ionic polymer cluster energetic. J. Appl. Phys. 97, 013541 (2005). Scholar
  22. 22.
    Jo, C., Pugal, D., Oh, I.K., Kim, K.J.: Recent advances in ionic polymer–metal composite actuators and their modeling and applications. Prog. Polym. Sci. 38, 1037–1066 (2013). Scholar
  23. 23.
    Mauritz, K.A., Moore, R.B.: State of understanding of Nafion. Chem. Rev. 104(10), 4535–4586 (2004). Scholar
  24. 24.
    Duncan, A.J., Leo, D.J., Long, T.E.: Beyond Nafion: charged macro-molecules tailored for performance as ionic polymer transducers. Macromolecules 41, 7765–7775 (2008). Scholar
  25. 25.
    Curtin, D.E., Lousenberg, R.D., Henry, T.J., Tangeman, P.C., Tisack, M.E.: Advanced materials for improved PEMFC performance and life. J. Power Sour. 131, 41–48 (2004). Scholar
  26. 26.
    Bufalo, G.D., Placidi, L., Profiri, M.: A mixture theory framework for modeling the mechanical actuation of ionic polymer metal composites. Smart Mater. Struct. 17, 045010 (2008). Scholar
  27. 27.
    Cha, Y., Porfiri, M.: Mechanics and electrochemistry of ionic polymer metal composites. J. Mech. Phys. Solids 71, 156–178 (2014). Scholar
  28. 28.
    Nagpure, T., Chen, Z.: Control-oriented modeling of ionic polymer–metal composite enabled hydrogen gas production. Int. J. Hydrog. Energy 41(16), 6619–6629 (2016)CrossRefGoogle Scholar
  29. 29.
    Nemat-Nasser, S., Zamani, S., Tor, Y.: Effect of solvents on the chemical and physical properties of ionic polymer-metal composites. J. Appl. Phys. 99, 104902 (2006). Scholar
  30. 30.
    Kim, K.J., Shahinpoor, M.: A review of ionic polymeric soft actuators and sensors. Soft Robot 1(1), 38–52 (2014). Scholar
  31. 31.
    Bar-Cohen, Y.: Electroactive polymers: current capabilities and challenges. In: SPIE’s 9th Annual International Symposium on Smart Structures and Materials. International Society for Optics and Photonics, pp. 1–7 (2002)Google Scholar
  32. 32.
    Bar-Cohen, Y., Zhang, Q.: Electroactive polymer actuators and sensors. MRS Bull. 5(3), 173–181 (2008). Scholar
  33. 33.
    Bar-Cohen, Y., Leary, S.P., Shahinpoor, M., Harrison, J.S., Smith, J.G.: Electroactive polymer (EAP) actuators for planetary applications. In: 1999 Symposium on Smart Structures and Materials. International Society for Optics and Photonics, pp. 57–63 (1999)Google Scholar
  34. 34.
    Bar-Cohen, Y.: Electroactive polymers as artificial muscles: capabilities, potentials and challenges. Robotics 2000, 188–196 (2000)Google Scholar
  35. 35.
    Bar-Cohen, Y.: Electroactive polymers as artificial muscles: a review. J. Spacecr. Rockets 39(6), 822–827 (2002). Scholar
  36. 36.
    Bar-Cohen, Y., Kim, K.J., Choi, H.R., Madden, J.D.W.: Electroactive polymer materials. Smart Mater. Struct. 16(2), S197 (2007). Scholar
  37. 37.
    Keshavarzi, A., Shahinpoor, M., Kim, K.J., Lantz, J.W.: Blood pressure, pulse rate, and rhythm measurement using ionic polymer-metal composite sensors. In: 1999 Symposium on Smart Structures and Materials, pp. 369–376 (1999)Google Scholar
  38. 38.
    McDaid, A.J., Aw, K.C., Haemmerle, E., Shahinpoor, M., Xie, S.Q.: Adaptive tuning of a 2DOF controller for robust cell manipulation using IPMC actuators. J. Micromech. Microeng. 21(12), 125004 (2011). Scholar
  39. 39.
    Shahinpoor, M.: Smart thin sheet batteries made with ionic polymer metal composites (IPMC’S). In: ASME 2004 International Mechanical Engineering Congress and Exposition, pp. 97–102 (2004)Google Scholar
  40. 40.
    Bahramzadeh, Y., Shahinpoor, M.: Ionic polymer-metal composites (IPMCs) as dexterous manipulators and tactile sensors for minimally invasive robotic surgery. In: SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, pp. 83402O–83402O (2012)Google Scholar
  41. 41.
    Van De Pol, F.C.M., Branebjerg, J.: Micro liquid-handling devices-a review. Micro System Technologies 90, pp. 799–805. Springer, Berlin, Heidelberg (1990)Google Scholar
  42. 42.
    Wallmersperger, T., Leo, D.J., Kothera, C.K.: Transport modeling in ionomeric polymer transducers and its relationship to electromechanical coupling. J. Appl. Phys. 101, 024912 (2007). Scholar
  43. 43.
    Nardinocchi, P., Pezzulla, M., Placidi, L.: Thermodynamically based multiphysic modeling of ionic polymer metal composites. J. Intell. Mater. Syst. Struct. 22, 1887–1897 (2011). Scholar
  44. 44.
    Biswal, D.K., Bandopadhya, D., Dwivedy, S.K.: Preparation and experimental investigation of thermo-electromechanical behavior of Ag-IPMC actuator. Int. J. Precis. Eng. Manuf. 13, 777–782 (2011). Scholar
  45. 45.
    Biswal, D.K., Nayak, B.: Analysis of time dependent bending response of Ag-IPMC actuator. Procedia Eng. 144, 600–606 (2016). Scholar
  46. 46.
    COMSOL: COMSOL Multiphysics® Manual Guide version 4.4. (2013)
  47. 47.
    Coulson, J.M., Richardson, J.F.: Particle technology and separation processes. Chemical Engineering, Vol. 2, Butterworth-Heinemann (2002)Google Scholar
  48. 48.
    Chemitiganti, R.R.V., Spellman, C.W.: Management of progressive type 2 diabetes: role of insulin therapy. Osteopath. Med. Prim. Care 3, 5 (2009). Scholar
  49. 49.
    Fitt, A.D., Gonzalez, G.: Fluid mechanics of the human eye: aqueous humour flow in the anterior chamber. Bull. Math. Biol. 68(1), 53–71 (2006). Scholar
  50. 50.
    Shahinpoor, M.: Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymeric gel muscles. Smart Mater. Struct. 1(1), 91–94 (1992). Scholar
  51. 51.
    Guo, S., Ge, Y., Li, L., Liu, S.: Underwater swimming micro robot using IPMC actuator. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 249–254 (2006)Google Scholar
  52. 52.
    Yeom, S.-W., Oh, I.-K.: A biomimetic jellyfish robot based on ionic polymer metal composite actuators. Smart Mater. Struct. 18(8), 085002 (2009). Scholar
  53. 53.
    Shen, Q., Wang, T., Liang, J., Wen, L.: Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Mater. Struct. 22(7), 075035 (2013). Scholar
  54. 54.
    Kim, B., Kim, T., Liang, D.-H., Jung, J., Park, J.-O.: A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Mater. Struct. 14(6), 1579 (2005). Scholar
  55. 55.
    Kim, K.J., Yim, W., Paquette, J.W., Kim, D.: Ionic polymer-metal composites for underwater operation. J. Intell. Mater. Syst. Struct. 18(2), 123–131 (2007). Scholar
  56. 56.
    Chen, Z., Um, T.I., Bart-Smith, H.: A novel fabrication of ionic polymer–metal composite membrane actuator capable of 3-dimensional kinematic motions. Sens. Actuators A Phys. 168(1), 131–139 (2011). Scholar
  57. 57.
    Hubbard, J.J., Fleming, M., Palmre, V., Pugal, D., Kim, K.J., Kim, K.L.: Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. IEEE J. Ocean. Eng. 39(3), 540–551 (2014). Scholar
  58. 58.
    Cha, Y., Laut, J., Phamduy, P., Porfiri, M.: Swimming robots have scaling laws, too. IEEE/ASME Trans. Mechatron. 21(1), 598–600 (2016). Scholar
  59. 59.
    Abdelnour, K., Mancia, E., Peterson, S.D., Porfiri, M.: Hydrodynamics of underwater propulsors based on ionic polymer–metal composites: a numerical study. Smart Mater. Struct. 18(8), 085006 (2009). Scholar
  60. 60.
    Lee, J.S., Gutta, S., Yim, W.: Open-loop control of ionic polymer metal composite (IPMC) based underwater actuator using a network of neural oscillator. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2007. IROS 2007, pp. 2132–2137 (2007).
  61. 61.
    Toonder, J.M., Bos, F., Broer, D., Andersion, P.D.: Artificial cilia for active micro-fluidic mixing. Lab Chip 8, 533–541 (2008). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Electronic Telecommunication, Mechanical & Automotive Engineering and High Safety Vehicle Core Technology Research CenterINJE UniversityGimhaeRepublic of Korea

Personalised recommendations