Conducting Polymer Based Ionic Polymer Metal Composite Actuators

  • David GendronEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Organic materials that mimic the mammalian skeleton muscles are of great interest in artificial actuators for applications such as robot legs, surgical instruments and Braille displays. These ionic polymer metal composite (IPMC) actuators are compact, lightweight, silent, strong and reliable. In this regard, conjugated or conducting polymeric materials are attractive as these offer the desired properties and their actuator operations are similar to biological muscles. This chapter focuses on four types of conjugated polymers: polyaniline, polypyrrole, polythiophene and poly(3,4-ethylenedioxythiophene): polystyrene sulfonate as active materials in IMPC actuators. First, their chemical or electrochemical synthesis is described. Then, their actuators characteristics and performances are discussed and compared. In sum, this chapter aims to give the reader a good overview of the pros and cons in respect of each type of materials as well as their uses in actuators.


IPMC Conducting polymers Actuators Polyaniline Polypyrrole Polythiophene PEDOT:PSS 


  1. 1.
    Alici, G., Spinks, G., Huynh, N.N., Sarmadi, L., Minato, R.: Establishment of a biomimetic device based on tri-layer polymer actuators–propulsion fin. Bioinspir. Biomim. 2, 18–30 (2007)CrossRefGoogle Scholar
  2. 2.
    Chen, D., Pei, Q.: Electronic muscles and skins: a review of soft sensors and actuators. Chem. Rev. 117, 11239–11268 (2017)CrossRefGoogle Scholar
  3. 3.
    Bar-Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, 2nd edn. SPIE Publications (2004)Google Scholar
  4. 4.
    Bhandari, B., Lee, G.-Y., Ahn, S.-H.: A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. Int. J. Precis. Eng. Manuf. 13, 141–163 (2012)CrossRefGoogle Scholar
  5. 5.
    Bar-Cohen, Y., Zhang, Q.: Electroactive polymer actuators and sensors. MRS Bull. 33, 173–177 (2008)Google Scholar
  6. 6.
    Eisenberg, A., King, M.: Ion-containing Polymers: Physical Properties and Structures. Academic Press (1977)Google Scholar
  7. 7.
    Kim, O., Kim, S.J., Park, M.J.: Low-voltage-driven soft actuators. Chem. Commun. 54, 4895–4904 (2018)CrossRefGoogle Scholar
  8. 8.
    Kim, K.J., Shahinpoor, M.: Ionic polymer–metal composites: II Manufacturing techniques. Smart Mater. Struct. 12, 65–79 (2003)CrossRefGoogle Scholar
  9. 9.
    Shahinpoor, M., Kim, K.J.: Novel ionic polymer–metal composites equipped with physically loaded particulate electrodes as biomimetic sensors, actuators and artificial muscles. Sens. Actuator A-Phys. 96, 125–132 (2002)Google Scholar
  10. 10.
    Kim, B.K., Kim, B.M., Ryu, J.W., Oh, I.-H., Lee, S.-K., Cha, S.-E., Pak, J.-H.: Analysis of mechanical characteristics of the ionic polymer metal composite (IPMC) actuator using cast ion-exchange film. Proc. SPIE 5051, 486–495 (2003)Google Scholar
  11. 11.
    Lee, S.J., Han, M.J., Kim, S.J., Jho, J.Y., Lee, H.Y., Kim, Y.H.: A new fabrication method for IPMC actuators and application to artificial fingers. Smart Mater. Struct. 15, 1217–1224 (2006)CrossRefGoogle Scholar
  12. 12.
    Takeneka, H., Torikai, E., Kawami, Y., Wakabayashi, N.: Solid polymer electrolyte water electrolysis. Int. J. Hydrog. Energy 7, 397–403 (1982)CrossRefGoogle Scholar
  13. 13.
    Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: III Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13, 1362–1388 (2004)CrossRefGoogle Scholar
  14. 14.
    Otero,T.F., Angulo, E., Rodriguez, J., Santamaria, C.: Electrochemomechanical properties from a bilayer: polypyrrole/non-conducting and flexible material—artificial muscle. J. Electroanal. Chem. 341, 369–375 (1992)Google Scholar
  15. 15.
    Shirakawa, H., Louis, E.J., MacDiarmid, A.G., Chiang, C.K., Heeger, A.J.: Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 578–580 (1977)Google Scholar
  16. 16.
    Chiang, C.K., Fincher, C.R., Park, Y.W., Heeger, A.J., Shirakawa, H., Louis, E.J., Gau, S.C., MacDiarmid, A.G.: Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098 (1977)CrossRefGoogle Scholar
  17. 17.
    van Mullekom, H.A.M., Vekemans, J.A.J.M., Havinga, E.E., Meijer, E.W.: Developments in the chemistry and band gap engineering of donor-acceptor substituted conjugated polymers. Mater. Sci. Eng. R Rep. R32, 1 (2001)CrossRefGoogle Scholar
  18. 18.
    Moliton, A., Hiorns, R.C.: Review of electronic and optical properties of semiconducting π-conjugated polymers: applications in optoelectronics. Polym. Int. 53, 1397–1412 (2004)CrossRefGoogle Scholar
  19. 19.
    Patil, A.O., Heeger, A.J., Wudl, F.: Optical properties of conducting polymers. Chem. Rev. 183–200 (1988)Google Scholar
  20. 20.
    Morita, S., Zakhidov, A.A., Yoshino, K.: Doping effect of buckminsterfullerene in conducting polymer: change of absorption spectrum and quenching of luminescene. Solid State Commun. 82, 29–252 (1992)CrossRefGoogle Scholar
  21. 21.
    Lüssem, B., Keum, C.-M., Kasemann, D., Naab, B., Bao, Z., Leo, K.: Doped organic transistors. Chem. Rev. 116, 13714–13751 (2016)CrossRefGoogle Scholar
  22. 22.
    Kaneto, K., Kaneko, M., Min, Y., MacDiarmid, A.G.: “Artificial muscle”: electromechanical actuators using polyaniline films. Synth. Met. 71, 2211–2212 (1995)CrossRefGoogle Scholar
  23. 23.
    Mondal, S.K., Prasad, K.R., Munichandraiah, N.: Analysis of electrochemical impedance of polyaniline films prepared by galvanostatic, potentiostatic and potentiodynamic methods. Synth. Met. 148, 275–286 (2005)Google Scholar
  24. 24.
    Boeva, Z.A., Sergeyev, V.G.: Polyaniline: synthesis, properties, and application. Polym. Sci. Ser. C  56, 144–153 (2014)Google Scholar
  25. 25.
    Li, C., Bai, H., Shi, G.: Conducting polymer nanomaterials: electrosynthesis and applications. Chem. Soc. Rev. 38, 2397–2409 (2009)CrossRefGoogle Scholar
  26. 26.
    Heinze, J., Frontana-Uribe, B.A., Ludwigs, S.: Electrochemistry of conducting polymers—persistent models and new concepts. Chem. Rev. 110, 4724–4771 (2010)Google Scholar
  27. 27.
    Stejskal, J., Gilbert, R.G.: Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure Appl. Chem. 74, 857–867 (2002)Google Scholar
  28. 28.
    Kim, J., Yun, S.-R., Deshpande, S.D.: Synthesis, characterization and actuation behavior of polyaniline-coated electroactive paper actuators. Polym. Int. 56, 1530–1536 (2007)Google Scholar
  29. 29.
    Sansinena, J.-M., Gao, J., Wang, H.-L.: High-performance, monolithic polyaniline electrochemical actuators. Adv. Funct. Mater. 13, 703–709 (2003)CrossRefGoogle Scholar
  30. 30.
    Wang, H.L., Gao, J.B., Sansinena, J.M., McCarthy, P.: Fabrication and characterization of polyaniline monolithic actuators based on a novel configuration: integrally skinned asymmetric membrane. Chem. Mater. 14, 2546–2552 (2002)CrossRefGoogle Scholar
  31. 31.
    Liu, Q., Liu, L., Xie, K., Meng, Y., Wu, H., Wang, G., Dai, Z., Wei, Z., Zhang, Z.: Synergistic effect of a r-GO/PANI nanocomposite electrode based air working ionic actuator with a large actuation stroke and long-term durability. J. Mater. Chem. A 3, 8380–8388 (2015)CrossRefGoogle Scholar
  32. 32.
    Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., Rossi, D.D., Rinzler, A.G., Jashinski, O., Roth, S., Kertesz, M.: Carbon nanotubes actuators. Science 284, 1340–1344 (1999)CrossRefGoogle Scholar
  33. 33.
    Fukushima, T., Asaka, K., Kosaka, A., Aida, T.: Fully plastic actuator through layer-by-layer casting with ionic-liquid-based bucky gel. Angew. Chem. Int. Ed. 44, 2410–2413 (2005)CrossRefGoogle Scholar
  34. 34.
    Xu, J., Wang, K., Zu, S., Han, B., Wei, Z.: Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano 4, 5019–5026 (2010)CrossRefGoogle Scholar
  35. 35.
    Vernitskaya, T.V., Efimov, O.N.: Polypyrrole: a conducting polymer; its synthesis, properties and applications. Russ. Chem. Rev. 66, 443–457 (1997)Google Scholar
  36. 36.
    Alici, G., Punning, A., Shea, H.R.: Enhancement of actuation ability of ionic-type conducting polymer actuators using metal ion implantation. Sens. Actuator B Chem. 157, 72–84 (2011)CrossRefGoogle Scholar
  37. 37.
    Ding, J., Zhou, D., Spinks, G., Wallace, G., Forsyth, S., Forsyth, M., MacFarlane, D.: Use of ionic liquids as electrolytes in electromechanical actuator systems based on inherently conducting polymers. Chem. Mater. 15, 2392–2398 (2003)CrossRefGoogle Scholar
  38. 38.
    Scharifker, B.R., Garcia-Pastoriza, E., Marino, W.: The growth of polypyrrole films on electrodes. J. Electroanal. Chem. 300, 85–98 (1991)CrossRefGoogle Scholar
  39. 39.
    Zemel, P.S.A., Zinger, B.: Characterization of polypyrrole based heterojunction. Synth. Met. 41, 443 (1991)CrossRefGoogle Scholar
  40. 40.
    Pei, Q., Inganas, O.: Conjugated polymers and the bending cantilever method: electrical muscles and smart devices. Adv. Mater. 4, 277–278 (1992)CrossRefGoogle Scholar
  41. 41.
    Chiarelli, P., Della Santa, A., DeRossi, D., Mazzoldi, A.: Actuation propeties of electrochemically driven polypyrrole free-standing films. In: Proceedings of 2nd International Conference on Intelligent Materials, p. 352. Technomic Pub. Co. (1994)Google Scholar
  42. 42.
    Gandhi, M.R., Murray, P., Spinks, G.M., Wallace, G.G.: Mechanism of electromechanical actuation in polypyrrole. Synth. Met. 73, 247–256 (1995)CrossRefGoogle Scholar
  43. 43.
    Temmer, R., Must, I., Kaasik, F., Aabloo, A., Tamm, T.: Combined chemical and electrochemical synthesis methods for metal-free polypyrrole actuators Sens. Actuator B-Chem. 166–167, 411–418 (2012)CrossRefGoogle Scholar
  44. 44.
    Madden, J.D., Cush, R.A., Kanigan, T.S., Hunter, I.W.: Fast contracting polypyrrole actuators. Synth. Met. 113, 185–192 (2000)CrossRefGoogle Scholar
  45. 45.
    Alici, G., Devaud, V., Renaud, P., Spinks, G.: Conducting polymer microactuators operating in air. J. Micromech. Microeng. 19, 025017 (2009)CrossRefGoogle Scholar
  46. 46.
    Yan, B., Wu, Y., Gao, L.: Recent advances on polypyrrole electroactuators. Polymers 9, 446–466 (2017)Google Scholar
  47. 47.
    Tadesse, Y., Grange, R.W., Priyam, S.: Synthesis and cyclic force characterization of helical polypyrrole actuators for artificial facial muscles. Smart Mater. Struct. 18, 085008 (2009)CrossRefGoogle Scholar
  48. 48.
    Aguilar-Hernandez, J., Potje-Kamloth, K.: Evaluation of the electrical conductivity of polypyrrole polymer composites. J. Appl. Phys. 34, 1700–1711 (2001)Google Scholar
  49. 49.
    Wu, Y., Alici, G., Spinks, G.M., Wallace, G.G.: Fast trilayer polypyrrole bending actuators for high speed applications. Synth. Met. 156, 1017–1022 (2006)CrossRefGoogle Scholar
  50. 50.
    Ding, J., Liu, L., Spinks, G.M., Zhou, D., Wallace, G.G., Gillespie, J.: High performance conducting polymer actuators utilising a tubular geometry and helical wire interconnects. Synth. Met. 138, 391–398 (2003)CrossRefGoogle Scholar
  51. 51.
    Osaka, L., McCullough, R.D.: Advances in molecular design and synthesis of regioregular polythiophenes. Acc. Chem. Res. 41, 1202–1214 (2008)CrossRefGoogle Scholar
  52. 52.
    McCullough, R.D., Lowe, R.D.: Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J. Chem. Soc. Chem. Commun. 1, 70–72 (1992)CrossRefGoogle Scholar
  53. 53.
    Loewe, R.S., Khersonsky, S.M., McCullough, R.D.: A simple method to prepare head-to-tail coupled, regioregular Poly(3-alkylthiophenes) using grignard metathesis. Adv. Mater. 11, 250–253 (1999)CrossRefGoogle Scholar
  54. 54.
    Chen, T.A., Rieke, R.D.: The first regioregular head-to-tail poly(3-hexylthiophene-2,5-diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J. Am. Chem. Soc. 114, 10087–10088 (1992)CrossRefGoogle Scholar
  55. 55.
    Fuchiwaki, M., Takashima, W., Kaneto, K.: Soft actuators based on Poly(3-alkyl thiophene) films upon electrochemical oxidation and reduction. Mol. Cryst. Liq. Cryst. 374, 513–520 (2002)CrossRefGoogle Scholar
  56. 56.
    Xi, B., Truong, V.T., Whitten, P.G., Ding, J., Spinks, G., Wallace, G.G.: Poly(3-methylthiophene) electrochemical actuators showing increased strain and work per cycle at higher operating stresses. Polymers 47, 7720–7725 (2006)CrossRefGoogle Scholar
  57. 57.
    Thongbor, S., Pattavarakorn, D.: Electromechanical properties of electroactive polythiophene/elastomer blend. In: TIChE International Conference ms007 (2001)Google Scholar
  58. 58.
    Tttavarakorn, D., Youngta, P., Jaesrichai, S., Thongbor, S., Chaimongkol, P.: Electroactive performances of conductive polythiophene/hydrogel hybrid artificial muscle. Energy Procedia 34, 673–681 (2013)CrossRefGoogle Scholar
  59. 59.
    Okuzaki, H., Suzuki, H., Ito, T.: Electrically driven PEDOT/PSS actuators. Synth. Met. 159, 2233–2236 (2009)CrossRefGoogle Scholar
  60. 60.
    Okuzaki, H., Hosaka, K., Suzuki, H., Ito, T.: Effect of temperature on humido-sensitive conducting polymer actuators. Sens. Actuator A-Phys. 157, 96–99 (2010)CrossRefGoogle Scholar
  61. 61.
    Ikushima, K., John, S., Ono, A., Nagamitsu, S.: PEDOT/PSS bending actuators for autofocus micro lens applications. Synth. Met. 160, 1877–1883 (2010)CrossRefGoogle Scholar
  62. 62.
    Cho, M.S., Seo, H.J., Nam, J.D., Choi, H.R., Koo, J.C., Song, K.G., Lee, Y.: A solid state actuator based on the PEDOT/NBR system. Sens. Actuator B-Chem. 119, 621–624 (2006)CrossRefGoogle Scholar
  63. 63.
    Farajollahi, M., Woehling, V., Plesse, C., Nguyen, G.T.M., Vidal, F., Sassani, F., Yang, V.X.D., Madden, J.D.W.: Self-contained tubular bending actuator driven by conducting polymers. Sens. Actuator A-Phys. 249, 45–56 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.OleotekThetford MinesCanada

Personalised recommendations