Polysaccharide-Based Ionic Polymer Metal Composite Actuators

  • A. Popa
  • A. Filimon
  • L. LupaEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Cellulose and chitosan are naturally abundant biopolymers which can be used as ion exchange polymers in various applications. Due to their useful characteristics, a lot of research has been done on using these materials as a base for obtaining ionic polymer metal composite actuators. The present chapter discusses numerous ways of combination between polysaccharide and various electrically conductive materials such as carbon nanotubes and graphene in the presence or absence of different ionic liquids, and subsequent use of these materials to improve the actuation performance of the polysaccharide-based actuators. Though a lot of studies have been performed for obtaining optimal compositions and suitable methods in respect of polysaccharide-based ionic polymer metal composite actuators. There is still a niche to find the best composition structure and the most efficient and low-cost method of obtaining actuators in order to meet the needs of various industries. The search continues for actuators with enhanced mechanical, electrical and electroactive performance, with good durability and flexibility in processing.


  1. 1.
    Singh, V., Kumar, P., Sanghi, R.: Use of microwave irradiation in the grafting modification of the polysaccharide—a review. Prog. Polym. Sci. 37, 340–364 (2012). Scholar
  2. 2.
    Dias, A.M., Cortez, A.R., Barsan, M., Santos, J., Brett, C.M., de Sousa, H.C.: ACS Sustain. Chem. Eng. 1, 1480–1492 (2013). Scholar
  3. 3.
    Chirayil, C.J., Mathew, L., Thomas, S.: Review of recent research in nano cellulose preparation from different lignocellulosic fibres. Rev. Adv. Mater Sci. 37, 20–28 (2014)Google Scholar
  4. 4.
    Yi, H., Wu, L.-Q., Bentley, W.E., Ghodssi, R., Rubloff, G.W., Culver, J.N., Payne, G.F.: Biofabrication with Chitosan. Biomacromolecules 6, 2881–2894 (2005). Scholar
  5. 5.
    Li, Y., Li, G., Peng, H., Chen, K.: Facile synthesis of electroactive polypyrroleechitosan composite nanospheres with controllable diameters. Polym. Int. 60(4), 647–651 (2011). Scholar
  6. 6.
    Silva Simone, S., Mano João, F., Reis Rui, L.: Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem. 19, 1208–1220 (2017). Scholar
  7. 7.
    Tiyaboonchai, W.: Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ. J. Sci. Technol. 11(3), 51–66 (2013)Google Scholar
  8. 8.
    Lu, L., Chen, W.: Biocompatible composite actuator: a supramolecular structure consisting of the biopolymer chitosan, carbon nanotubes, and an ionic liquid. Adv. Mater. 22(33), 3745–3748 (2010). Scholar
  9. 9.
    He, Q., Yu, M., Yang, X., Kim, K.J., Dai, Z.: An ionic electro-active actuator made with graphene film electrode, chitosan and ionic liquid. Smart Mater. Struct. 24(6), 065026 (9 pp) (2015).
  10. 10.
    Cai, Z., Kim, J.: Characterization and electromechanical performance of cellulose-chitosan blend electro-active paper. Smart Mater. Struct. 17(3), 035028 (9 pp) (2008).
  11. 11.
    Shang, J., Shao, Z., Chen, X.: Chitosan-based electroactive hydrogel, Chitosan-based electroactive hydrogel. Polymer 49(25), 5520–5525 (2008). Scholar
  12. 12.
    Siqueira, J.R., Gasparotto, L.H., Crespilho, F.N., Carvalho, A.J., Zucolotto, V., Oliveira, O.N.: Physicochemical properties and sensing ability of metallophthalocyanines/chitosan nanocomposites. J. Phys. Chem. B 110(45), 22690–22694 (2006). Scholar
  13. 13.
    Jang, S.-D., Kim, J.-H., Zhijiang, C., Kim, J.: The effect of chitosan concentration on the electrical property of chitosan-blended cellulose electroactive paper. Smart Mater. Struct. 18(1), 015003 (5 pp.) (2009).
  14. 14.
    Jeon, J.H., Cheedarala, R.K., Kee, C.D., Oh, I.K.: Dry-type artificial muscles based on pendent sulfonated chitosan and functionalized graphene oxide for greatly enhanced ionic interactions and mechanical stiffness. Adv. Funct. Mater. 23(48), 6007–6018 (2013). Scholar
  15. 15.
    Kim, J., Yun, S.: Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206 (2006). Scholar
  16. 16.
    Sabo, R.C., Elhajjar, R.F., Clemons, C.M., Pillai, K.M.: Characterization and Processing of nanocellulose thermosetting composites. In: Pandey, J., Takagi, H., Nakagaito, A., Kim, H.J. (eds.) Handbook of Polymer Nanocomposites. Processing, Performance and Application, Volume C: Polymer Nanocomposites of Cellulose Nanoparticles, pp. 265–295. Springer, Berlin, Heidelberg (2015).
  17. 17.
    Farid, M., Zhao, G., Khuong, T.L., Sun, Z.Z., Ur, Rehman N., Rizwan, M.: Biomimetic applications of ionic polymer metal composites (IPMC) actuators-a critical review. J. Biomim. Biomater. Biomed. Eng. 20, 1–10 (2014). Scholar
  18. 18.
    Gross, J.H.: Liquid injection field desorption/ionization-mass spectrometry of ionic liquids. J. Am. Soc. Mass Spectrom. 18(12), 2254–2262 (2007). Scholar
  19. 19.
    Jastorff, B., Störmann, R., Ranke, J., Mölter, K., Stock, F., Oberheitmann, B., Hoffmann, W., Hoffmann, J., Nüchter, M., Ondruschka, B., Filser, J.: How hazardous are ionic liquids? Structure-activity relationships and biological testing as important elements for sustainability evaluation. Green Chem. 5, 136–142 (2003). Scholar
  20. 20.
    Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002). Scholar
  21. 21.
    Kim, K.B., Kim, J.: Fabrication and characterization of electro-active cellulose films regenerated by using 1-butyl-3-methylimidazolium chloride ionic liquid. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. 227, 2665–2670 (2013). Scholar
  22. 22.
    Edgar, K.J., Buchanan, C.M., Debenham, J.S., Rundquist, P.A., Seiler, B.D., Shelton, M.C., Tindall, D.: Advances in cellulose ester performance and application. Prog. Polym. Sci. 26(9), 1605–1688 (2001). Scholar
  23. 23.
    Vidal, F., Plesse, C., Teyssié, D., Chevrot, C.: Long-life air working conducting semi-IPN/ionic liquid based actuator. Synth. Met. 142(1), 287–291 (2004). Scholar
  24. 24.
    Vidal, F., Plesse, C., Randriamahazaka, H., Teyssie, D., Chevrot, C.: Long-life air working semi-IPN/ionic liquid: new precursor of artificial muscles. Mol. Cryst. Liq. Cryst. 448, 95/[697]–102/[704] (2006).
  25. 25.
    Ozdemir, O., Karakuzu, R., Sarikanat, M., Seki, Y., Akar, E., Cetin, L., Yilmaz, O.C., Sever, K., Sen, I., Gurses, B.O.: Improvement of the electrochemical performance of carboxymethylcellulose-based actuators by graphene nanoplatelet loading. Cellulose 22, 3251–3260 (2015). Scholar
  26. 26.
    Murphy, E.B., Wudl, F.: The world of smart healable materials. Prog. Polym. Si 35, 223–251 (2010). Scholar
  27. 27.
    Qiu, X.Y., Hu, S.W.: “Smart” materials based on cellulose: a review of the preparations, properties, and applications. Materials 6, 738–781 (2013). Scholar
  28. 28.
    Sen, I., Seki, Y., Sarikanat, M., Cetin, L., Gurses, B.O., Ozdemir, O., Yilmaz, O.C., Sever, K., Akar, E., Mermer, O.: Electroactive behavior of graphene nanoplatelets loaded cellulose composite actuators. Compos. Part B 69, 369–377 (2015).
  29. 29.
    Cao, Y., Wu, J., Zhang, J., Li, H.Q., Zhang, Y., He, J.S.: Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem. Eng. J. 147, 13–21 (2009). Scholar
  30. 30.
    Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Ding, Y., Wu, G.: Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8, 325–327 (2006). Scholar
  31. 31.
    Zhang, H., Wu, J., Zhang, J., He, J.: 1-Alkyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatezing solvent for cellulose. Macromolecules 30(20), 8272–8277 (2005). Scholar
  32. 32.
    Akar, E., Seki, Y., Ozdemir, O., Sen, I., Sarikanat, M., Gurses, B.O., Yilmaz, O.C., Cetin, L., Sever, K.: Electromechanical characterization of multilayer graphene-reinforced cellulose composite containing 1-ethyl-3-methylimidazolium diethylphosphonate ionic liquid. Sci. Eng. Compos. Mater. 24(2), 289–295 (2015). Scholar
  33. 33.
    Stankovich, S., Dikin, D.A., Domment, G.H.B., Kohlhaas, K.M., Zimmery, E.J., Stach, E.A., Piner, R.D., Nguyen, S.B.T., Ruoff, R.S.: Graphene-based composite materials. Nature 442, 282–286 (2006)CrossRefGoogle Scholar
  34. 34.
    Eda, G., Chhowalla, M.: Graphene-based composite thin films for electronics. Nano Lett. 9(2), 814–818 (2009). Scholar
  35. 35.
    Ozdemir, O., Karakuzu, R., Sarikanat, M., Akar, E., Seki, Y., Cetin, L., Sen, I., Gurses, B.O., Yilmaz, O.C., Sever, K., Mermer, O.: Effects of PEG loading on electromechanical behavior of cellulose-based electroactive composite. Cellulose 22, 1873–1881 (2015). Scholar
  36. 36.
    Song, W., Yang, L., Sun, Z., Li, F., Du, S.: Study on the actuation enhancement for ionic-induced IL-cellulose based biocompatible composite actuators by glycerol plasticization treatment method. Cellulose 25(5), 2885–2889 (2018). Scholar
  37. 37.
    Wang, F., Jeon, J.H., Park, S., Kee, C.D., Kim, S.J., Oh, I.K.: Soft biomolecule actuator based on highly functionalized bacterial cellulose nano-fiber network with carboxylic acid groups. Soft Matter 12, 246–254 (2012). Scholar
  38. 38.
    Cheedarala, R.V., Jeon, J.H., Kee, C.D., Oh, I.K.: Bio‐inspired all‐organic soft actuator based on a π–π stacked 3D ionic network membrane and ultra‐fast solution processing. Adv. Funct. Mater. 24, 6005–6015 (2014).
  39. 39.
    Greco, F., Zucca, A., Taccola, S., Menciassi, A., Fujie, T., Haniuda, H., Takeoka, S., Dario, P., Mattoli, V.: Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7, 10642–10650 (2011). Scholar
  40. 40.
    Greco, F., Domenici, V., Desii, A., Sinibaldi, E., Zalar, B., Mazzolai, B., Mattoli, V.: Liquid single crystal elastomer/conducting polymer bilayer composite actuator: modelling and experiments. Soft Matter 9, 11405–11416 (2013). Scholar
  41. 41.
    Okuzali, H., Tagaki, S., Hishiki, F., Tanigawa, R.: Ionic liquid/polyurethane/PEDOT:PSS composites for electro-active polymer actuators. Sens. Actuators B 194, 59–63 (2014). Scholar
  42. 42.
    Haldorai, Y., Shim, J.J.: Chemo-responsive bilayer actuator film: fabrication, characterization and actuator response. New J. Chem. 38, 2653–2659 (2014).
  43. 43.
    Seiffert, S., Oppermann, W., Saalwachter, K.: Hydrogel formation by photocrosslinking of dimethylmaleimide functionalized polyacrylamide polymer 48, 5599–5611 (2007). Scholar
  44. 44.
    Kim, J., Wang, N., Chen, Y., Lee, S.K., Yun, G.Y.: Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14, 217–223 (2007). Scholar
  45. 45.
    Kim, J., Yun, S., Mahadeva, S.K., Yun, K., Yang, S.Y., Maniruzzaman, M.: Paper actuators made with cellulose and hybrid materials. Sensors 10, 1473–1485 (2010). Scholar
  46. 46.
    Mahadeva, S.K., Yi, C., Kim, J.: Effect of room temperature ionic liquids adsorption on electromechanical behaviour of cellulose electro-active paper. Macromol. Res. 17(2), 116–120 (2009)CrossRefGoogle Scholar
  47. 47.
    Wang, N., Chen, Y., Kim, J.: Electroactive paper actuator made with chitosan-cellulose films: effect of acetic acid. Macromol. Mater. Eng. 292, 748–753 (2007)CrossRefGoogle Scholar
  48. 48.
    Kim, J., Wang, N., Chen, Y.: Effect of chitosan and ions on actuation behaviour of cellulose-chitosan laminated films as electro-active paper actuators. Cellulose 14, 439–445 (2007)CrossRefGoogle Scholar
  49. 49.
    Kim, J., Seo, Y.B.: Electro-active paper actuators. Smart Mater. Struct. 11, 355–360 (2002)CrossRefGoogle Scholar
  50. 50.
    Sun, Z., Zhao, G., Song, W.: A naturally crosslinked chitosan based ionic actuator with cathode deflection phenomenon. Cellulose 24(2), 441–445 (2016). Scholar
  51. 51.
    Dos Santos, D.S., Riul, A., Malmegrum, R.R.: A layer-by-layer film of chitosan in a taste sensor application. Macromol. Biosci. 3(10), 591–595 (2003)CrossRefGoogle Scholar
  52. 52.
    Zolfagharian, A., Kouzani, A.Z., Khoo, S.Y., Nasri-Nasrabadi, B., Kaynak, A.: Development and analysis of a 3D printed hydrogel soft actuator. Sens. Actuators A 265, 94–101 (2017). Scholar
  53. 53.
    Shahinpoor, M.: Chitosan/IPMC artificial muscle. Adv. Sci. Technol. 79, 32–40 (2013)CrossRefGoogle Scholar
  54. 54.
    Muralidharan, M.N., Shinu, K.P., Seema, A.: Optically triggered actuation in chitosan/reduced graphene oxide nanocomposites. Carbohydr. Polym. 144, 115–121 (2016). Scholar
  55. 55.
    Lu, L.H., Chen, W.: Large-scale aligned carbon nanotubes from their purified highly concentrated suspension. ACS Nano 4(2), 1042–1048 (2010). Scholar
  56. 56.
    Harrison, B.S., Atala, A.: Carbon nanotube applications for tissue engineering. Biomaterials 28(2), 344–353 (2007). Scholar
  57. 57.
    Li, J., Ma, W., Song, L., Niu, Z., Cai, L., Zeng, Q., Zhang, X., Dong, H., Zhao, D., Zhoud, W., Xie, S.: Superfast-response and ultrahigh-power-density electromechanical actuators based on hierarchal carbon nanotube electrodes and chitosan. Nano Lett. 11, 4636–4641 (2011). Scholar
  58. 58.
    Zhao, G., Yang, J., Wang, Y., Zhao, H., Wang, Z.: Preparation and electromechanical properties of the chitosan gel polymer actuator based on heat treating. Sens. Actuators 279, 481–492 (2018). Scholar
  59. 59.
    Zhao, G., Sun, Z., Wang, J., Xu, Y., Li, L., Ge, Y.: Electrochemical properties of a highly biocompatible chitosan polymer actuator based on a different nanocarbon/ionic liquid electrode. Polym. Compos. (2015).
  60. 60.
    Sun, Z., Zhao, G., Song, W.L., Wang, J., Haq, M.U.: Investigation into electromechanical properties of biocompatible chitosan-based ionic actuator. Exp. Mech. 58(1), 99–109 (2017)Google Scholar
  61. 61.
    Di Martino, A., Sittinger, M., Risbud, M.V.: Chitosan: a versatile biopolymer for orthopedic tissue-engineering. Biomaterials 26(3), 5983–5990 (2005)CrossRefGoogle Scholar
  62. 62.
    Neto, G.T., Dantas, T.N.C., Fonseca, J.L.C.: Permeability studies in chitosan membranes. Effects of crosslinking and poly (ethylene oxide) addition. Carbohyd. Res. 340(17), 2630–2636 (2005)Google Scholar
  63. 63.
    Altinkaya, E., Seki, Y., Yilmaz, O.C., Cetin, L., Ozdemir, O., Sen, I., Sever, K., Gurses, B.O., Sarikanat, M.: Electromechanical performance of chitosan-based composite electroactive actuators. Compos. Sci. Technol. 129, 108–115 (2016). Scholar
  64. 64.
    Yeng, C.M., Husseinsyah, S., Ting, S.S.: Effect of cross-linked agent on tensile properties of chitosan/corn cob biocomposite films. Polym. Plast Technol. 54(3), 270–275Google Scholar
  65. 65.
    Altinkaya, E., Seki, Y., Cetin, L., Gurses, B.O., Ozdemir, O., Sever, K., Sarikanat, M.: Characterization and analysis of motion mechanism of electroactive chitosan-based actuator. Carbohyd. Polym. 181, 404–411 (2018). Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Chemistry Timisoara of Romanian AcademyTimisoaraRomania
  2. 2.“Petru Poni” Institute of Macromolecular ChemistryIasiRomania
  3. 3.Faculty of Industrial Chemistry and Environmental EngineeringPolitehnica University TimisoaraTimisoaraRomania

Personalised recommendations