Metal-Organic Framework Composites IPMC Sensors and Actuators

  • Bianca Maranescu
  • Aurelia VisaEmail author
Part of the Engineering Materials book series (ENG.MAT.)


Metal-organic frameworks (MOFs), a highly studied class of complex structured porous materials, containing different types of central metal ions attached to organic linkers, are used in various applications such as catalysis, separation, absorption, photochemistry, proton conductivity, biotechnology, magnetism and sensoristic science etc. The architectural structures of MOFs provide special properties as improved thermal and mechanical stabilities, high surface areas and large pore sizes to these materials. The need for new functionalities is to take into account that the fabrication methods must be robust, scalable, friendly to environment and cost-effective.


Metal-organic frameworks Sensors Molecular machines Volatile organic compounds Actuators 



This work was partially supported by Program no. 2, Project no. 2.3 from the Institute of Chemistry Timisoara of Romanian Academy and by a grant of the Romanian National Authority for Scientific Research, CNCS—UEFISCDI, project number PN-III-P1-1.1-TE-2016-2008, within PNCDI III.


  1. 1.
    Li, H., Eddaoudi, M., O’Keeffe, M., Yaghi, O.M.: Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 402, 276–279 (1999)CrossRefGoogle Scholar
  2. 2.
    Batten, R.S., Champness, N.R., O’Keeffe, M., et al.: Terminology of metal–organic frameworks and coordination polymers. Pure Appl. Chem. 85, 1715–1724 (2013)CrossRefGoogle Scholar
  3. 3.
    Eddaoudi, M., Kim, J., Rosi, N., Vodak, D., Wachter, J., O’Keeffe, M., Yaghi, O.M.: Systematic design of pore size and functionality in isoreticular mofs and their application in methane storage. Science 295, 469–472 (2002)CrossRefGoogle Scholar
  4. 4.
    Zhou, H.C., Long, J.R., Yaghi, O.M.: Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012)CrossRefGoogle Scholar
  5. 5.
    Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., Yazaydin, A.O., Snurr, R.Q., O’Keeffe, M., Kim, J., Yaghi, O.M.: Ultrahigh porosity in metal-organic frameworks. Science 329, 424–428 (2010)CrossRefGoogle Scholar
  6. 6.
    Lu, W., Wei, Z., Gu, Z.Y., Liu, T.F., Park, J., Tian, J., Zhang, M., Zhang, Q., Gentle III, T., Bosch, M., Zhou, H.C.: Tuning the structure and function of metal-organic frameworks via linker design. Chem. Soc. Rev. 43, 5561–5593 (2014)CrossRefGoogle Scholar
  7. 7.
    Li, M., Li, D., O’Keeffe, M., Yaghi, O.M.: Topological analysis of metal–organic frameworks with polytopic linkers and/or multiple building units and the minimal transitivity principle. Chem. Rev. 114, 1343–1370 (2014)CrossRefGoogle Scholar
  8. 8.
    Wang, C., Liu, X., Demir, N.K., Chen, J.P., Li, K.: Applications of water stable metal–organic frameworks. Chem. Soc. Rev. 45, 5107–5134 (2016)Google Scholar
  9. 9.
    Visa, A., Mracec, M., Maranescu, B.: Structure simulation into a lamellar supramolecular network and calculation of the metal ions/ligands ratio 6, 91 (2012)Google Scholar
  10. 10.
    Stassen, I., Burtch, N., Talin, A., Falcaro, P., Allendorf, M., Ameloot, R.: An updated roadmap for the integration of metal–organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 46, 3185–3241 (2017)CrossRefGoogle Scholar
  11. 11.
    Yaghi, O.M., Li, H.: Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 117, 10401–10402 (1995)CrossRefGoogle Scholar
  12. 12.
    Stock, N., Biswas, S.: Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012)CrossRefGoogle Scholar
  13. 13.
    Cook, T.R., Zheng, Y.R., Stang, P.J.: Metal–organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal–organic materials. Chem. Rev. 113, 734–777 (2013)CrossRefGoogle Scholar
  14. 14.
    Colodrero, R.M.P., Cabeza, A., Olivera-Pastor, P., et al.: Divalent metal vinylphosphonate layered materials: compositional variability, structural peculiarities, dehydration behavior, and photoluminescent properties. Inorg. Chem. 50, 11202–11211 (2011)Google Scholar
  15. 15.
    Maranescu, B., Visa, A., Ilia, G., et al.: Spectroscopic properties of new cerium metal–organic framework based on phosphonate ligands with vinyl functional group. J. Coord. Chem. 67, 1562–1572 (2014)CrossRefGoogle Scholar
  16. 16.
    Horcajada, P., Gref, R., Baati, T., et al.: Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012)CrossRefGoogle Scholar
  17. 17.
    Ping, L.W., Bin, X., Wang, G.Y., Wu, J.: Synthesis of polycarbonate diol catalyzed by metal-organic framework Zn4O[CO2-C6H4-CO2]3. Sci. China Chem. 54, 1468–1473 (2011)Google Scholar
  18. 18.
    Safarifard, V., Morsali, A.: Applications of ultrasound to the synthesis of nanoscale metal–organic coordination polymers. Coord. Chem. Rev. 292, 1–14 (2015)CrossRefGoogle Scholar
  19. 19.
    Safarifard, V., Morsali, A.: Sonochemical syntheses and characterization of nano-sized lead(II) coordination polymer with ligand 1H-1,2,4-triazole-3-carboxylate. Ultrason. Sonochem. 19, 300–306 (2012)CrossRefGoogle Scholar
  20. 20.
    Abbasi, A.R., Noori, N., Azadbakht, A., Bafarani, M.: Dense coating of surface mounted Cu2O nanoparticles upon silk fibers under ultrasound irradiation with antibacterial activity. J. Iran. Chem. Soc. 13, 1273–1281 (2016)CrossRefGoogle Scholar
  21. 21.
    Ranjbar, M., Nabitabar, M., Çelik, Ö., Yousefi, M.: Sonochemical synthesis and characterization of nanostructured copper(I) supramolecular compound as a precursor for the fabrication of pure-phase copper oxide nanoparticles. J. Iran. Chem. Soc. 12, 551–559 (2015)Google Scholar
  22. 22.
    James, S.L., Adams, C.J., Bolm, C., et al.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012)CrossRefGoogle Scholar
  23. 23.
    Sakamoto, H., Matsuda, R., Kitagawa, S.: Systematic mechanochemical preparation of a series of coordination pillared layer frameworks. Dalton Trans. 41, 3956–3961 (2012)CrossRefGoogle Scholar
  24. 24.
    Lv, D., Chen, Y., Li, Y., et al.: Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption. J. Chem. Eng. Data 62, 2030–2036 (2017)CrossRefGoogle Scholar
  25. 25.
    Chen, Y., Wu, H., Liu, Z.: Liquid-assisted mechanochemical synthesis of copper based mof-505 for the separation of CO2 over CH4 or N2. Ind. Eng. Chem. Res. 57, 703–709 (2018)CrossRefGoogle Scholar
  26. 26.
    Chen, Y., Xiao, J., Lv, D., et al.: Highly efficient mechanochemical synthesis of an indium based metal-organic framework with excellent water stability. Chem. Eng. Sci. 158, 539–544 (2017)CrossRefGoogle Scholar
  27. 27.
    Hashemi, L., Morsali, A.: Microwave assisted synthesis of a new lead(II) porous three-dimensional coordination polymer: study of nanostructured size effect on high iodide adsorption affinity. Cryst. Eng. Comm. 14, 779–781 (2012)CrossRefGoogle Scholar
  28. 28.
    Ni, Z., Masel, R.I.: Rapid production of metal−organic frameworks via microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 128, 12394–12395 (2006)CrossRefGoogle Scholar
  29. 29.
    Laybourn, A., Katrib, J., Ferrari-John, R.S., et al.: Metal–organic frameworks in seconds via selective microwave heating. J. Mater. Chem. A 5, 7333–7338 (2017)CrossRefGoogle Scholar
  30. 30.
    Blăniţă, G., Ardelean, O., Lupu, D., et al.: Microwave assisted synthesis of MOF-5 at atmospheric pressure. Rev. Roum. Chim. 56, 583–588 (2011)Google Scholar
  31. 31.
    MadhanVinu, I.D., Wei-Cheng, L., Duraisamy, S.R., et al.: Microwave-assisted synthesis of nanoporous aluminum-based coordination polymers as catalysts for selective sulfoxidation reaction. Polymers 9, 498 (2017)CrossRefGoogle Scholar
  32. 32.
    Martinez Joaristi, A., Juan-Alcaniz, J., Serra-Crespo, P., et al.: Electrochemical synthesis of some archetypical Zn2+, Cu2+, and Al3+ metal organic frameworks. Cryst. Growth Des. 12, 3489–3498 (2012)CrossRefGoogle Scholar
  33. 33.
    Mueller, U., Schubert, M., Teich, F., et al.: Metal–organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006)CrossRefGoogle Scholar
  34. 34.
    Yang, H., Liu, X., Song, X., et al.: In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBrTrans. Nonferrous Met. Soc. China 25, 3987–3994 (2015)CrossRefGoogle Scholar
  35. 35.
    Al-Kutubi, H., Gascon, J., Sudholter, E.J., Rassaei, L.: Electrosynthesis of metal–organic frameworks: challenges and opportunities. Chem. Electro. Chem. 2, 462–474 (2015)Google Scholar
  36. 36.
    Pirzadeh, K., Ghoreyshi, A.A., Rahimnejad, M., Mohammadi, M.: Electrochemical synthesis, characterization and application of a microstructure Cu3(BTC)2 metal organic framework for CO2 and CH4 separation. Korean J. Chem. Eng. 35, 974–983 (2018)CrossRefGoogle Scholar
  37. 37.
    Leigh, D.A.: Genesis of the nanomachines: the 2016 nobel prize in chemistry. Angew. Chem. Int. Ed. 55, 14506–14508 (2016)CrossRefGoogle Scholar
  38. 38.
    Le Bailly, B.: Nobel prize in chemistry: welcome to the machine. Nat. Nanotechnol. 11, 923–927 (2016)CrossRefGoogle Scholar
  39. 39.
    Balzani, V., Credi, A., Venturi M.: Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009)CrossRefGoogle Scholar
  40. 40.
    Abendroth, J.M., Bushuyev, O.S., Weiss, P.S., Barrett, C.J.: Controlling motion at the nanoscale: rise of the molecular machines. ACS Nano 9, 7746–7768 (2015)CrossRefGoogle Scholar
  41. 41.
    Erbas-Cakmak, S., Leigh, D.A., McTernan, C.T., Nussbaumer, A.L.: Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015)CrossRefGoogle Scholar
  42. 42.
    Jiang, X., Duan, H.B., Kahn, S.I., Garcia-Garibay, M.A.: Diffusion-controlled rotation of triptycene in a metal−organic framework (MOF) sheds light on the viscosity of MOF-confined solvent. ACS Cent. Sci. 2(9), 608–613 (2016)CrossRefGoogle Scholar
  43. 43.
    Vogelsberga, C.S., Uribe-Romob, F.J., Liptonc, A.S., et al.: Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl. Acad. Sci. U.S.A. 114(52), 13613–13618 (2017)CrossRefGoogle Scholar
  44. 44.
    Li, J., Yu, X., Xu, M., Liu, W., Sandraz, E., Lan, H., Wang, J., Cohen, S.M.: Metal-organic frameworks as micromotors with tunable engines and brakes. J. Am. Chem. Soc. 139, 611–614 (2017)CrossRefGoogle Scholar
  45. 45.
    Ikezoe, Y., Washino, G., Uemura, T., Kitagawa, S., Matsui, H.: Autonomous motors of a metal–organic framework powered by reorganization of self-assembled peptides at interfaces. Nat. Mater. 11, 1081–1085 (2012)CrossRefGoogle Scholar
  46. 46.
    Lu, Y., Yan, B.: A ratiometric fluorescent pH sensor based on nanoscale metal–organic frameworks (MOFs) modified by europium (III) complexes. Chem. Commun. 50, 13323–13326 (2014)CrossRefGoogle Scholar
  47. 47.
    Della Rocca, J., Liu, D.M., Lin, W.B.: Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc. Chem. Res. 44, 957–968 (2011)CrossRefGoogle Scholar
  48. 48.
    Lu, Y., Yan, B.: An efficient and sensitive fluorescent pH sensor based on amino functional metal–organic frameworks in aqueous environment. Dalton Trans. 45, 7078–7084 (2016)CrossRefGoogle Scholar
  49. 49.
    Xing, K., Fan, R., Wang, F., Nie, H., Du, X., Gai, S., Wang, P., Yang, Y.: Dual-stimulus-triggered programmable drug release and luminescent ratiometric pH sensing from chemically stable biocompatible zinc metal-organic framework. ACS Appl. Mater. Interfaces (2018).
  50. 50.
    Harbuzaru, B.V., Corma, A., Rey, F., Jordá, J.L., Ananias, D., Carlos, L.D., Rocha, J.: A miniaturized linear pH sensor based on a highly photoluminescent self-assembled europium(III) metal-organic framework. Angew. Chem. Int. Ed. 48, 6476–6479 (2009)CrossRefGoogle Scholar
  51. 51.
    Meng, Q., Xin, X., Zhang, L., Dai, F., Wang, R., Sun, D.: A multifunctional Eu MOF as a fluorescent pH sensor and exhibiting highly solvent-dependent adsorption and degradation of rhodamine B. J. Mater. Chem. A 3, 24016–24021 (2015)CrossRefGoogle Scholar
  52. 52.
    Chen, H., Wang, J., Shan, D., Chen, J., Zhang, S., Lu, X.: Dual-emitting fluorescent metal-organic framework nanocomposites as a broad-range ph sensor for fluorescence imaging. Anal. Chem. (2018).
  53. 53.
    Aguilera-Sigalat, J., Bradshaw, D.: A colloidal water-stable MOF as a broad-range fluorescent pH sensor via post-synthetic modification. Chem. Commun. 50, 4711–4713 (2014)CrossRefGoogle Scholar
  54. 54.
    He, C., Lu, K., Lin, W.: Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 136(35), 12253–12256 (2014)CrossRefGoogle Scholar
  55. 55.
    Deibert, B.J., Li, J.: A distinct reversible colorimetric and fluorescent low pH response on a water-stable zirconium–porphyrin metal–organic framework. Chem. Commun. 50, 9636–9639 (2014)CrossRefGoogle Scholar
  56. 56.
    Bloch, E.D., Britt, D., Cl, Lee, et al.: Metal insertion in a microporous metal−organic framework lined with 2,2′-bipyridine. J. Am. Chem. Soc. 132, 14382–14384 (2010)CrossRefGoogle Scholar
  57. 57.
    Yi, F.Y., Chen, D., Wu, M.K., Han, L., Jiang, H.L.: Chemical sensors based on metal–organic frameworks. Chem Plus Chem 81, 1–17 (2016)Google Scholar
  58. 58.
    Qi, X.L., Lin, R.B., Chen, Q., Lin, J.B., Zhang, J.P., Chen, X.M.: A flexible metal azolate framework with drastic luminescence response toward solvent vapors and carbon dioxide. Chem. Sci. 2, 2214–2218 (2011)Google Scholar
  59. 59.
    Xiao, J., Wu, Y., Li, M., Liu, B.Y., Huang, X.C., Li, D.: Crystalline structural intermediates of a breathing metal–organic framework that functions as a luminescent sensor and gas reservoir. Chem. Eur. J. 19, 1891–1895 (2013)CrossRefGoogle Scholar
  60. 60.
    Zhang, M., Feng, G., Song, Z., Zhou, Y.P., et al.: Two-dimensional metal–organic framework with wide channels and responsive turn-on fluorescence for the chemical sensing of volatile organic compounds. J. Am. Chem. Soc. 136, 7241–7244 (2014)CrossRefGoogle Scholar
  61. 61.
    Jin, Z., He, H., Zhao, H.: A luminescent metal–organic framework for sensing methanol in ethanol solution. Dalton Trans. 42, 13335–13338 (2013)CrossRefGoogle Scholar
  62. 62.
    Wang, N.H., Jiang, S.Q., Lu, Q.Y., Zhou, Z.Y., et al.: A pillar-layer MOF for detection of small molecule acetone and metal ions in dilute solution. RSC Adv. 5, 48881–48884 (2015)CrossRefGoogle Scholar
  63. 63.
    Wang, D., Zhang, L., Li, G., Huo, Q., Liu, Y.: Luminescent MOF material based on cadmium(II) and mixed ligands: application for sensing volatile organic solvent molecules. RSC Adv. 5, 18087–18091 (2015)CrossRefGoogle Scholar
  64. 64.
    Wu, P., Liu, Y., Li, Y., Jiang, M., Li, X.I., Shia, Y., Wang, J.: Cadmium(II)-based metal–organic framework for selective trace detection of nitroaniline isomers and photocatalytic degradation of methylene blue in neutral aqueous solution. J. Mater. Chem. A 4, 16349–16355 (2016)CrossRefGoogle Scholar
  65. 65.
    Müller, P., Wisser, F.M., Bon, V., Grünker, R., Senkovska, I., Kaskela, S.: Post-synthetic paddle-wheel crosslinking and functionalization of 1,3-phenylenebis(azanetriyl)tetrabenzoate based MOFs. Chem. Mater. 27, 2460–2467 (2015)CrossRefGoogle Scholar
  66. 66.
    Yi, F.Y., Chen, J., Wang, S.C., Gu, M., Han, L.: A heterobimetallic metal-organic framework as “turn-on” sensor toward DMF. Chem. Commun. 54, 8233–8236 (2018)Google Scholar
  67. 67.
    Yamazoe, N., Shimizu, Y.: Humidity sensors: principles and applications. Sens. Actuators 10, 379–398 (1986)CrossRefGoogle Scholar
  68. 68.
    Tetelin, A., Pellet, C., LavilleC, Kaoua G.N.: Fast response humidity sensors for a medical microsystem. Sens. Actuators B 91, 211–218 (2003)CrossRefGoogle Scholar
  69. 69.
    Buvailo, A.I., Xing, Y., Hines, J., Dollahon, N., Borguet, E.: TiO2/LiCl-based nanostructured thin film for humidity sensor applications. ACS Appl. Mater. Interfaces 3, 528–533 (2011)CrossRefGoogle Scholar
  70. 70.
    Ohira, S.I., Dasgupta, P.K., Schug, K.A.: Fiber optic sensor for simultaneous determination of atmospheric nitrogen dioxide, ozone, and relative humidity. Anal. Chem. 81, 4183–4191 (2009)CrossRefGoogle Scholar
  71. 71.
    Neumeier, S., Echterhof, T., Pfeifer, H., Simon, U.: Zeolite based trace humidity sensor for high temperature applications in hydrogen atmosphere. Sens. Actuators B 134, 171–175 (2008)CrossRefGoogle Scholar
  72. 72.
    Zhu, W.H., Wang, Z.M., Gao, S.: Two 3D porous lanthanide-fumarate-oxalate frameworks exhibiting framework dynamics and luminescent change upon reversible de- and rehydration. Inorg. Chem. 4, 1337–1342 (2007)CrossRefGoogle Scholar
  73. 73.
    Tiano, A.L., Koenigsmann, C., Santulli, A.C., Wong S.S.: Solution-based synthetic strategies for one-dimensional metal-containing nanostructures. Chem. Commun. 46, 8093–8130 (2010)CrossRefGoogle Scholar
  74. 74.
    Gao, Y., Jing, P., Yan, N., Hilbers, M., Zhang, H., Rothenberg, G., Tanase, S.: Dual-mode humidity detection using a lanthanide-based metal–organic framework: towards multifunctional humidity sensors. Chem. Commun. 53, 4465–4468 (2017)CrossRefGoogle Scholar
  75. 75.
    Andrew, K.F., Foster, D., Richardson, F.S.: Comparison of 7FJ ← 5DO emission spectra for Eu (III) in crystalline environments of octahedral, near-octahedral, and trigonal symmetry. Chem. Phys. Lett. 95, 507–511 (1983)CrossRefGoogle Scholar
  76. 76.
    Cheng, H.H., Hu, Y., Zhao, F., Dong, Z.L., Wang, Y.H., Chen, N., Zhang, Z.P., Qu, L.T.: Moisture-activated torsional graphene-fiber motor. Adv. Mater. 26, 2909–2913 (2014)CrossRefGoogle Scholar
  77. 77.
    Zhao, F., Wang, L.X., Zhao, Y., Qu, L.T., Dai, L.M.: Graphene oxide nanoribbon assembly toward moisture-powered information storage. Adv. Mater. 29, 1604972 (2017)CrossRefGoogle Scholar
  78. 78.
    Zhao, F., Cheng, H.H., Zhang, Z.P., Jiang, L., Qu, L.T.: Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015)CrossRefGoogle Scholar
  79. 79.
    Zhao, F., Liang, Y., Cheng, H.H., Jiang, L., Qu, L.T.: Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9, 912–916 (2016)CrossRefGoogle Scholar
  80. 80.
    Allendorf, M.D., Foster, M.E., Leonard, F., Stavila, V., Feng, P.L., Doty, F.P., Leong, K., Ma, E.Y., Johnston, S.R., Talin, A.A.: Guest-induced emergent properties in metal–organic frameworks. J. Phys. Chem. Lett. 6, 1182–1195 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Chemistry Timişoara of the Romanian AcademyTimişoaraRomania

Personalised recommendations