Skip to main content

Numerical Simulation in Coupled Hydroelastic Problems by Using the LS-STAG Immersed Boundary Method

  • Conference paper
  • First Online:
IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 34))

  • 548 Accesses

Abstract

A software package is developed for numerical simulation in coupled hydroelastic problems by using the modified LS-STAG immersed boundary method. In the case of moving immersed boundary, Arbitrary Lagrangian Eulerian method idea is used. It allows solution of problems when domain shape changes in the simulation process due to hydroelastic body motion without mesh reconstruction at each time step. The flow past an in-line oscillating circular airfoil was computed to verify the numerical method and the developed software package. Some numerical results are also presented for simulation of a circular airfoil wind resonance phenomenon, wind turbine rotors autorotation, buffeting phenomenon and tube-bundle flow-induced vibrations. Computational results are in good qualitative agreement with the experimental data. Obtained results demonstrate the extensive possibilities of the developed numerical method and its effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37, 239–261 (2005). https://doi.org/10.1146/annurev.fluid.37.061903.175743

    Article  MathSciNet  MATH  Google Scholar 

  2. Cheny, Y., Botella, O.: The LS-STAG method: a new immersed boundary/level-set method for the computation of incompressible viscous flows in complex moving geometries with good conservation properties. J. Comput. Phys. 229, 1043–1076 (2010). https://doi.org/10.1016/j.jcp.2009.10.007

    Article  MathSciNet  MATH  Google Scholar 

  3. Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, Berlin (2003). https://doi.org/10.1115/1.1760520

    Book  MATH  Google Scholar 

  4. Marchevskii, I.K., Puzikova, V.V.: Numerical simulation of the flow around two fixed circular airfoils positioned in tandem using the LS-STAG method. J. Mach. Manuf. Reliab. 45, 130–136 (2016). https://doi.org/10.3103/S1052618816020084

    Article  Google Scholar 

  5. Marchevskii, I.K., Puzikova, V.V.: Numerical simulation of the flow around two circular air-foils positioned across the stream using the LS-STAG method. J. Mach. Manuf. Reliab. 46, 114–119 (2017). https://doi.org/10.3103/S105261881702011X

    Article  Google Scholar 

  6. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for solution of non-symmetric linear systems. SIAM J. Sci. Stat. Comput. 2, 631–644 (1992). https://doi.org/10.1137/0913035

    Article  MATH  Google Scholar 

  7. Wesseling, P.: An introduction to multigrid methods. Willey, Hoboken (1991)

    MATH  Google Scholar 

  8. Van Kan, J., Vuik, C., Wesseling, P.: Fast pressure calculation for 2D and 3D time dependent incompressible flow. Numer. Linear Algebr. Appl. 7, 429–447 (2000). https://onlinelibrary.wiley.com/doi/abs/10.1002/1099-1506%28200009%297%3A6%3C429%3A%3AAID-NLA204%3E3.0.CO%3B2-8

  9. Donea, J., Huerta, A., Ponthot, J-Ph, Rodriguez-Ferran, A.: Arbitrary Lagrangian-Eulerian methods. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Fundamentals, vol. 1, pp. 413–437. (2004). https://doi.org/10.1002/0470091355.ecm009

    Chapter  Google Scholar 

  10. Lesoinne, M., Farhat, C.: Geometric conservation laws for flow problems with moving boundaries and deformable meshes, and their impact on aeroelastic computations. Comput. Method Appl. Mech. Eng. 134, 71–90 (2003). https://doi.org/10.1016/0045-7825(96)01028-6

    Article  MATH  Google Scholar 

  11. Gu, W., Chyu, C., Rockwell, D.: Timing of vortex formation from an oscillating cylinder. Phys. Fluids 6, 3677–3682 (1994). https://doi.org/10.1063/1.868424

    Article  Google Scholar 

  12. Guilmineau, E., Queutey, P.: On numerical simulation of vortex shedding from an oscillating circular. J. Fluid Struct. 16, 773–794 (2002). https://doi.org/10.1006/jfls.2002.0449

    Article  Google Scholar 

  13. Yang, J., Balaras, E.: An embedded-boundary formulation for large-eddy simulation o turbulent flows interacting with moving boundaries. J. Comput. Phys. 215, 12–40 (2006). https://doi.org/10.1016/j.jcp.2005.10.035

    Article  MathSciNet  MATH  Google Scholar 

  14. Udaykumar, H.S., Mittal, R., Rampunggoon, P., Khanna, A.: A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174, 345–380 (2001). https://doi.org/10.1006/jcph.2001.6916

    Article  MATH  Google Scholar 

  15. Dutsch, H., Durst, F., Becker, S., Lienhart, H.: Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan-Carpenter numbers. J. Fluid Mech. 360, 249–271 (1998). https://doi.org/10.1017/S002211209800860X

    Article  MATH  Google Scholar 

  16. Klamo, J.T., Leonard, A., Roshko, A.: On the maximum amplitude for a freely vibrating cylinder in cross flow. J. Fluids Struct. 21, 429–434 (2005). https://doi.org/10.1016/j.jfluidstructs.2005.07.010

    Article  Google Scholar 

  17. He, J.W., Glovinski, R., Metcalfe, R., Nordlander, A., Triaux, J.P.: Active control and drag optimization for flow past a circular cylinder. Part I: Oscillatory cylinder rotation. J. Comput. Phys. 163, 87–117 (2000)

    Article  Google Scholar 

  18. Henderson, R.D.: Nonlinear dynamics and pattern formation in turbulent wake transition. J. Fluid Mech. 352, 65–112 (1997). https://doi.org/10.1017/S0022112097007465

    Article  MathSciNet  MATH  Google Scholar 

  19. Mittal, S., Kumar, V.: Flow-induced oscillations of two cylinders in tandem and staggered arrangements. J. Fluids Struct. 15, 717–736 (2001). https://doi.org/10.1006/jfls.2000.0376

    Article  Google Scholar 

  20. Mittal, S., Kumar, V.: Vortex induced vibrations of a pair of cylinders at Reynolds number 1000. Int. J. Comput. Fluid Dyn. 18, 601–614 (2004). https://doi.org/10.1080/1061856031000137017

    Article  MATH  Google Scholar 

  21. Zukauskas, A., Ulinskas, R., Katinas, V.: Fluid Dynamics and Flow-Induced Vibrations of Tube Banks [in Russian]. Vil’nyus (1984)

    Google Scholar 

  22. Marchevsky, I.K., Puzikova, V.V.: Numerical simulation of wind turbine rotors autorotation by using the modified LS-STAG immersed boundary method. Int. J. Rotating Mach. 1–7 (2017). https://doi.org/10.1155/2017/6418108

Download references

Acknowledgements

The work was supported by the Russian Science Foundation Grant (proj. No 17-79-20445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilia K. Marchevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marchevsky, I.K., Puzikova, V.V. (2019). Numerical Simulation in Coupled Hydroelastic Problems by Using the LS-STAG Immersed Boundary Method. In: Gutschmidt, S., Hewett, J., Sellier, M. (eds) IUTAM Symposium on Recent Advances in Moving Boundary Problems in Mechanics. IUTAM Bookseries, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-13720-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13720-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13719-9

  • Online ISBN: 978-3-030-13720-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics