Skip to main content

HCDSR: A Hierarchical Clustered Fault Tolerant Routing Technique for IoT-Based Smart Societies

  • Chapter
  • First Online:
Smart Infrastructure and Applications

Part of the book series: EAI/Springer Innovations in Communication and Computing ((EAISICC))

Abstract

Internet of Things (IoT) is revolutionizing all spheres of our lives leading the way for us to evolve into smarter societies. Wireless sensor networks (WSNs) are an integral part of the IoT ecosystems. Reliability, resilience, and energy conservation are the three most critical WSN requirements. Fault tolerance ensures the reliability and the resilience of WSNs in case of failures. This paper proposes a hierarchical clustered dynamic source routing (HCDSR) technique to improve fault tolerance and energy-efficient routing for WSNs. A survey of fault tolerant and energy-efficient routing techniques for WSNs is given. A taxonomy of fault tolerant techniques is introduced. The proposed HCDSR is simulated and compared with LEACH (low energy adaptive clustering hierarchy) and DFTR (dynamic fault tolerant routing) protocols to evaluate its performance. The results show that HCDSR outperforms LEACH and DFTR in terms of the total network energy, the number of nodes alive after a given time, and the network throughput. Directions for future work are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi, A.A., Younis, M.: A survey on clustering algorithms for wireless sensor networks. Comput. Commun. 30(14–15), 2826–2841 (2007)

    Article  Google Scholar 

  2. Ahmed, R.E.: A fault-tolerant, energy-efficient routing protocol for wireless sensor networks. In: 2015 International Conference on Information and Communication Technology Research (ICTRC), pp. 175–178 (2015)

    Google Scholar 

  3. Akkaya, K., Younis, M.: A survey on routing protocols for wireless sensor networks. Ad Hoc Netw. 3(3), 325–349 (2005)

    Article  Google Scholar 

  4. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)

    Article  Google Scholar 

  5. Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algorithms for smarter internet of things (IOT). Procedia Comput. Sci. 98(Suppl. C), 437–442 (2016). http://www.sciencedirect.com/science/article/pii/S187705091632213X

    Article  Google Scholar 

  6. Alam, F., Mehmood, R., Katib, I., Albogami, N.N., Albeshri, A.: Data fusion and IoT for smart ubiquitous environments: a survey. IEEE Access 5, 9533–9554 (2017)

    Article  Google Scholar 

  7. AlTurki, R., Mehmood, R.: Multimedia ad hoc networks: performance analysis. In: 2008 Second UKSIM European Symposium on Computer Modeling and Simulation, pp. 561–566 (2008)

    Google Scholar 

  8. Alturki, R., Mehmood, R.: Cross-layer multimedia QoS provisioning over Ad Hoc networks. In: Using Cross-Layer Techniques for Communication Systems, pp. 460–499. IGI Global, Hershey (2012). http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-0960-0.ch019

  9. Anastasi, G., Conti, M., Di Francesco, M., Passarella, A.: Energy conservation in wireless sensor networks: a survey. Ad Hoc Netw. 7(3), 537–568 (2009)

    Article  Google Scholar 

  10. Antle, C.E., Bain, L.J.: Weibull distribution. In: Encyclopedia of Statistical Sciences, vol. 12, pp. 7629–7634. Wiley, Hoboken (2004)

    Google Scholar 

  11. Arfat, Y., Aqib, M., Mehmood, R., Albeshri, A., Katib, I., Albogami, N., Alzahrani, A.: Enabling smarter societies through mobile big data fogs and clouds. Procedia Comput. Sci. 109, 1128–1133 (2017). http://www.sciencedirect.com/science/article/pii/S1877050917311213

    Article  Google Scholar 

  12. Azharuddin, M., Jana, P.K.: A distributed algorithm for energy efficient and fault tolerant routing in wireless sensor networks. Wirel. Netw. 21(1), 251–267 (2015)

    Article  Google Scholar 

  13. Azharuddin, M., Jana, P.K.: A PSO Based Fault Tolerant Routing Algorithm for Wireless Sensor Networks, pp. 329–336. Springer, New Delhi (2015)

    Google Scholar 

  14. Balakrishnan, H., Heinzelman, W.R., Chandrakasan, A.: Energy-efficient communication protocol for wireless microsensor networks. In: 2014 47th Hawaii International Conference on System Sciences, vol. 08, 8020 (2000)

    Google Scholar 

  15. Bogliolo, A., Lattanzi, E., Acquaviva, A.: Energetic sustainability of environmentally powered wireless sensor networks. In: Proceedings of the 3rd ACM International Workshop on Performance Evaluation of Wireless Ad Hoc, Sensor and Ubiquitous Networks, PE-WASUN ’06, pp. 149–152. ACM, New York (2006)

    Google Scholar 

  16. Bottero, M., Chiara, B.D., Deflorio, F.: Wireless sensor networks for traffic monitoring in a logistic centre. Transp. Res. C Emerg. Technol. 26, 99–124 (2013)

    Article  Google Scholar 

  17. Boucetta, C., Idoudi, H., Saidane, L.A.: Adaptive scheduling with fault tolerance for wireless sensor networks. In: Vehicular Technology Conference (VTC Spring), 2015 IEEE 81st, pp. 1–5. IEEE, Piscataway (2015)

    Google Scholar 

  18. Calero, C., Caro, A., Piattini, M.: An applicable data quality model for web portal data consumers. World Wide Web 11(4), 465–484 (2008)

    Article  Google Scholar 

  19. Casey, K., Lim, A., Dozier, G.: A sensor network architecture for tsunami detection and response. Int. J. Distrib. Sens. Netw. 4(1), 27–42 (2008)

    Article  Google Scholar 

  20. Cetinkaya, O., Akan, O.B.: Use of wireless sensor networks in smart homes. In: Emerging Communication Technologies Based on Wireless Sensor Networks: Current Research and Future Applications, pp. 233–258 (2016)

    Chapter  Google Scholar 

  21. Gelenbe, E., Ngai, E.: Adaptive random re-routing for differentiated QOS in sensor networks. Comput. J. 53(7), 1052–1061 (2010)

    Article  Google Scholar 

  22. Gillies, D., Thornley, D., Bisdikian, C.: Probabilistic approaches to estimating the quality of information in military sensor networks. Comput. J. 53(5), 493–502 (2010)

    Article  Google Scholar 

  23. Gupta, S.K., Kuila, P., Jana, P.K.: E3bft: energy efficient and energy balanced fault tolerance clustering in wireless sensor networks. In: 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 714–719 (2014)

    Google Scholar 

  24. Hamdan, D., Aktouf, O.E.K., Parissis, I., El Hassan, B., Hijazi, A.: Integrated fault tolerance framework for wireless sensor networks. In: 2012 19th International Conference on Telecommunications (ICT), pp. 1–6. IEEE, Piscataway (2012)

    Google Scholar 

  25. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An application-specific protocol architecture for wireless microsensor networks. IEEE Trans. Wirel. Commun. 1(4), 660–670 (2002)

    Article  Google Scholar 

  26. Hezaveh, M., Shirmohammdi, Z., Rohbani, N., Miremadi, S.G.: A fault-tolerant and energy-aware mechanism for cluster-based routing algorithm of WSNs. In: 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), pp. 659–664 (2015)

    Google Scholar 

  27. Khan, S.A., Bölöni, L., Turgut, D.: Bridge protection algorithms a technique for fault-tolerance in sensor networks. Ad Hoc Networks 24, 186–199 (2015)

    Article  Google Scholar 

  28. Kimençe, Ş., Bekmezci, İ.: Weighted relay node placement for wireless sensor network connectivity. Wirel. Netw 20(4), 553–562 (2014)

    Article  Google Scholar 

  29. Kuila, P., Jana, P.K.: Improved load balanced clustering algorithm for wireless sensor networks. In: Thilagam, P.S., Pais, A.R., Chandrasekaran, K., Balakrishnan, N. (eds.) Proceedings of the 2011 International Conference on Advanced Computing, Networking and Security, ADCONS’11, pp. 399–404. Springer, Berlin (2012)

    Google Scholar 

  30. Kuila, P., Jana, P.K.: Approximation schemes for load balanced clustering in wireless sensor networks. J. Supercomput. 68(1), 87–105 (2014)

    Article  Google Scholar 

  31. Lee, J.J., Krishnamachari, B., Kuo, C.C.J.: Aging analysis in large-scale wireless sensor networks. Ad Hoc Netw. 6(7), 1117–1133 (2008)

    Article  Google Scholar 

  32. Li, Y., Xiao, G., Singh, G., Gupta, R.: Algorithms for finding best locations of cluster heads for minimizing energy consumption in wireless sensor networks. Wirel. Netw. 19(7), 1755–1768 (2013)

    Article  Google Scholar 

  33. Mehmood, R., Alturki, R.: A scalable multimedia QoS architecture for ad hoc networks. Multimed. Tools Appl. 54(3), 551–568 (2011). https://doi.org/10.1007/s11042-010-0569-0

    Article  Google Scholar 

  34. Mehmood, R., Alturki, R.: Video QoS analysis over Wi-Fi networks. In: Advanced Video Communications over Wireless Networks, pp. 439–480. CRC Press, Boca Raton (2013)

    Chapter  Google Scholar 

  35. Mehmood, R., Nekovee, M.: Vehicular ad hoc and grid networks: discussion, design and evaluation. In: Proceedings of the 14th World Congress on Intelligent Transport Systems (ITS), Beijing (2007)

    Google Scholar 

  36. Mehmood, R., Alturki, R., Faisal, M.: A scalable provisioning and routing scheme for multimedia QoS over ad hoc networks. In: Mauthe, A., Zeadally, S., Cerqueira, E., Curado, M. (eds.) Future Multimedia Networking, pp. 131–142. Springer, Berlin (2009)

    Chapter  Google Scholar 

  37. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: Utilearn: A personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5, 2615–2635 (2017)

    Article  Google Scholar 

  38. Morello, R., Mukhopadhyay, S.C., Liu, Z., Slomovitz, D., Samantaray, S.R.: Advances on sensing technologies for smart cities and power grids: a review. IEEE Sens. J. PP(99), 1–1 (2017)

    Google Scholar 

  39. Muhammed, T., Shaikh, R.A.: An analysis of fault detection strategies in wireless sensor networks. J. Netw. Comput. Appl. 78(Suppl. C), 267–287 (2017). http://www.sciencedirect.com/science/article/pii/S1084804516302545

    Article  Google Scholar 

  40. Muhammed, T., Mehmood, R., Albeshri, A.: Enabling reliable and resilient IOT based smart city applications. In: Mehmood, R., Bhaduri, B., Katib, I., Chlamtac, I. (eds.) Smart Societies, Infrastructure, Technologies and Applications, pp. 169–184. Springer, Cham (2018)

    Chapter  Google Scholar 

  41. Nations, U.: Global Urban Observatory (GUO) UN-Habitat, https://unhabitat.org/urban-knowledge/guo/

  42. Nikam, S.S., Mane, P.B.: Swarm Intelligent WSN for Smart City, pp. 691–700. Springer, Singapore (2017)

    Google Scholar 

  43. Pantazis, N., Nikolidakis, S.A., Vergados, D.D.: Energy-efficient routing protocols in wireless sensor networks: a survey. IEEE Commun. Surv. Tutorials 15(2), 551–591 (2013)

    Article  Google Scholar 

  44. Ramanathan, N., Kohler, E., Girod, L., Estrin, D.: Sympathy: a debugging system for sensor networks [wireless networks]. In: Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks, pp. 554–555. IEEE Computer Society, Washington, DC (2004)

    Google Scholar 

  45. Ringwald, M., Römer, K., Vitaletti, A.: Snif: sensor network inspection framework. Tech. Rep. 535, Department of Computer Science, ETH Zurich, Zurich (2006)

    Google Scholar 

  46. Shnayder, V., Hempstead, M., Chen, B.R., Allen, G.W., Welsh, M.: Simulating the power consumption of large-scale sensor network applications. In: Proceedings of the 2Nd International Conference on Embedded Networked Sensor Systems, SenSys ’04, pp. 188–200. ACM, New York (2004)

    Google Scholar 

  47. Wang, R., Zhang, L., Sun, R., Gong, J., Cui, L.: Easitia: a pervasive traffic information acquisition system based on wireless sensor networks. IEEE Trans. Intell. Transp. Syst. 12(2), 615–621 (2011)

    Article  Google Scholar 

  48. Xu, J., Liu, W., Lang, F., Zhang, Y., Wang, C.: Distance measurement model based on RSSI in WSN. Wirel. Sens. Netw. 02(08), 6 (2010)

    Google Scholar 

  49. Zhao, Y., Wu, J., Li, F., Lu, S.: On maximizing the lifetime of wireless sensor networks using virtual backbone scheduling. IEEE Trans. Parallel Distrib. Syst. 23(8), 1528–1535 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge with thanks the technical and financial support from the Deanship of Scientific Research (DSR) at the King Abdulaziz University (KAU), Jeddah, Saudi Arabia, under the grant number G-651-611-38. The work carried out in this paper is supported by the High Performance Computing Center at the King Abdulaziz University, Jeddah.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thaha Muhammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Muhammed, T., Mehmood, R., Albeshri, A., Alzahrani, A. (2020). HCDSR: A Hierarchical Clustered Fault Tolerant Routing Technique for IoT-Based Smart Societies. In: Mehmood, R., See, S., Katib, I., Chlamtac, I. (eds) Smart Infrastructure and Applications. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-13705-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13705-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13704-5

  • Online ISBN: 978-3-030-13705-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics