Skip to main content

Software Quality in the Era of Big Data, IoT and Smart Cities

Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

Software quality is the degree to which the software conforms to its requirements. The complexity of software is on the rise with the developments of smart cities due to the complex nature of these applications and environments. Big data and Internet of Things (IoT) are driving radical changes in the software systems landscape. Together, big data, IoT, smart cities, and other emerging complex applications have exacerbated the challenges of maintaining software quality. The big data produced by IoT and other sources is used in designing or operating various software machines and systems. One of the challenges of big data is data veracity, which could lead to inaccurate or faulty system behavior. The aim of this paper is to review the technologies related to software quality in the era of big data, IoT, and smart cities. We elaborate on software quality processes, software testing and debugging. Model checking is discussed with some directions on the role it could play in the big data era and the benefits it could gain from big data. The role of big data in software quality is explored. Conclusion is drawn to suggest future directions.

Keywords

  • Software testing
  • Software debugging
  • Model checking
  • Big data
  • Data mining
  • Software quality
  • Smart cities
  • IoT

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-13705-2_21
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-13705-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 21.1
Fig. 21.2

References

  1. Abreu, R., Zoeteweij, P., Van Gemund, A.J.: On the accuracy of spectrum-based fault localization. In: Testing: Academic and Industrial Conference Practice and Research Techniques-MUTATION, 2007. TAICPART-MUTATION 2007, pp. 89–98. IEEE, Piscataway (2007)

    Google Scholar 

  2. Ackling, T., Alexander, B., Grunert, I.: Evolving patches for software repair. In: Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation, GECCO ’11, pp. 1427–1434. ACM, New York (2011)

    Google Scholar 

  3. Agarwal, D.: A comparative study of artificial neural networks and info fuzzy networks on their use in software testing. Master’s Thesis, University of South Florida (2004)

    Google Scholar 

  4. Agrawal, H., Horgan, J.R., London, S., Wong, W.E.: Fault localization using execution slices and dataflow tests. In: Proceedings of the Sixth International Symposium on Software Reliability Engineering, pp. 143–151. IEEE, Piscataway (1995)

    Google Scholar 

  5. Alam, F., Mehmood, R., Katib, I., Albeshri, A.: Analysis of eight data mining algorithms for smarter internet of things (IOT). Procedia Comput. Sci. 98, 437–442 (2016). https://doi.org/10.1016/j.procs.2016.09.068. http://www.sciencedirect.com/science/article/pii/S187705091632213X. The 7th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2016)/The 6th International Conference on Current and Future Trends of Information and Communication Technologies in Healthcare (ICTH-2016)/Affiliated Workshops

    CrossRef  Google Scholar 

  6. Alomari, E., Mehmood, R.: Analysis of Tweets in Arabic Language for Detection of Road Traffic Conditions, pp. 98–110. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94180-6_12. http://link.springer.com/10.1007/978-3-319-94180-6_12

    Google Scholar 

  7. Alotaibi, S., Mehmood, R.: Big Data Enabled Healthcare Supply Chain Management: Opportunities and Challenges, pp. 207–215. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94180-6_21. http://link.springer.com/10.1007/978-3-319-94180-6_21

    Google Scholar 

  8. Amatriain, X.: Mining large streams of user data for personalized recommendations. ACM SIGKDD Explor. Newsl. 14(2), 37–48 (2013)

    CrossRef  Google Scholar 

  9. Ammann, P.: System testing via mutation analysis of model checking specifications. ACM SIGSOFT Softw. Eng. Notes 25(1), 33 (2000)

    CrossRef  Google Scholar 

  10. Ammann, P., Offutt, J.: Introduction to software testing, Cambridge University Press, Cambridge (2016)

    CrossRef  Google Scholar 

  11. Ammann, P.E., Black, P.E., Majurski, W.: Using model checking to generate tests from specifications. In: Proceedings of Second International Conference on Formal Engineering Methods, pp. 46–54. IEEE, Piscataway (1998)

    Google Scholar 

  12. Arcuri, A.: On the automation of fixing software bugs. In: Companion of the 30th International Conference on Software Engineering, ICSE Companion ’08, pp. 1003–1006. ACM, New York (2008)

    Google Scholar 

  13. Arcuri, A., Yao, X.: A novel co-evolutionary approach to automatic software bug fixing. In: IEEE Congress on Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence), pp. 162–168. IEEE, Piscataway (2008)

    Google Scholar 

  14. Arfat, Y., Mehmood, R., Albeshri, A.: Parallel Shortest Path Graph Computations of United States Road Network Data on Apache Spark, pp. 323–336. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94180-6_30. http://link.springer.com/10.1007/978-3-319-94180-6_30

    Google Scholar 

  15. Assiri, F.Y., Bieman, J.M.: An assessment of the quality of automated program operator repair. In: Proceedings of the 2014 ICST Conference, ICST’14, IEEE, Piscataway (2014)

    Google Scholar 

  16. Assiri, F.Y., Bieman, J.M.: The impact of search algorithms in automated program repair. Submitted to the 2015 International Conference on Soft Computing and Software Engineering, (SeSe’15) (2015)

    CrossRef  Google Scholar 

  17. Assiri, F.Y., Bieman, J.M.: Fault localization for automated program repair: effectiveness, performance, repair correctness. Softw. Qual. J. 25(1), 171–199 (2017)

    CrossRef  Google Scholar 

  18. Baah, G.K., Podgurski, A., Harrold, M.J.: The probabilistic program dependence graph and its application to fault diagnosis. IEEE Trans. Softw. Eng. 36(4), 528–545 (2010)

    CrossRef  Google Scholar 

  19. Baier, C., Katoen, J.P.: Principles of model checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  20. Baresi, L., Young, M.: Test oracles. Tech. Rep., Technical Report CIS-TR-01-02, University of Oregon, Dept. of Computer and Information Science, Eugene, Oregon (2001)

    Google Scholar 

  21. Bates, P.C., Wileden, J.C.: High-level debugging of distributed systems: the behavioral abstraction approach. J. Syst. Softw. 3(4), 255–264 (1983)

    CrossRef  Google Scholar 

  22. Boyapati, C., Khurshid, S., Marinov, D.: Korat: automated testing based on java predicates. In: ACM SIGSOFT Software Engineering Notes, vol. 27, pp. 123–133. ACM, New York (2002)

    CrossRef  Google Scholar 

  23. Burdonov, I., Kossatchev, A., Petrenko, A., Galter, D.: Kvest: automated generation of test suites from formal specifications. In: International Symposium on Formal Methods, pp. 608–621. Springer, Berlin (1999)

    CrossRef  Google Scholar 

  24. Callahan, J., Schneider, F., Easterbrook, S., et al.: Automated software testing using model-checking. In: Proceedings 1996 SPIN workshop, vol. 353 (1996)

    Google Scholar 

  25. Carzaniga, A., Gorla, A., Mattavelli, A., Perino, N., Pezze, M.: Automatic recovery from runtime failures. In: Proceedings of the 2013 International Conference on Software Engineering, pp. 782–791. IEEE, Piscataway (2013)

    Google Scholar 

  26. Chappell, D.: The three aspects of software quality: functional, structural, and process, White Paper. Chappell & Associates, San Francisco, CA. Available at www.davidchappell.com. Last accessed 30 May 2019

  27. Chen, C.P., Zhang, C.Y.: Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275, 314–347 (2014)

    CrossRef  Google Scholar 

  28. Chen, T.Y., Cheung, S.C., Yiu, S.M.: Metamorphic testing: a new approach for generating next test cases. Tech. Rep., Technical Report HKUST-CS98-01, Department of Computer Science, Hong Kong University of Science and Technology, Hong Kong (1998)

    Google Scholar 

  29. Chilimbi, T.M., Liblit, B., Mehra, K., Nori, A.V., Vaswani, K.: Holmes: effective statistical debugging via efficient path profiling. In: IEEE 31st International Conference on Software Engineering, 2009. ICSE 2009, pp. 34–44. IEEE, Piscataway (2009)

    Google Scholar 

  30. Cieslak, D.A., Thain, D., Chawla, N.V.: Short paper: troubleshooting distributed systems via data mining. In: 15th IEEE International Symposium on High Performance Distributed Computing, pp. 309–312. IEEE, Piscataway (2006)

    Google Scholar 

  31. Cohen, W.W.: Fast effective rule induction. In: Machine Learning Proceedings 1995, pp. 115–123. Elsevier, Amsterdam (1995)

    Google Scholar 

  32. Dallmeier, V., Lindig, C., Zeller, A.: Lightweight defect localization for Java. In: ECOOP 2005-Object-Oriented Programming, pp. 528–550. Springer, Berlin (2005)

    CrossRef  Google Scholar 

  33. Debroy, V., Wong, W.E.: Using mutation to automatically suggest fixes for faulty programs. In: Third International Conference on Software Testing, Verification and Validation (ICST), pp. 65–74. IEEE, Piscataway (2010)

    Google Scholar 

  34. Debroy, V., Wong, W.E.: Combining mutation and fault localization for automated program debugging. J. Syst. Softw. 90, 45–60 (2014)

    CrossRef  Google Scholar 

  35. DeMillo, R.A., Lipton, R.J., Sayward, F.G.: Hints on test data selection: help for the practicing programmer. Computer 11(4), 34–41 (1978)

    CrossRef  Google Scholar 

  36. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases from model-based specifications. In: International Symposium of Formal Methods Europe, pp. 268–284. Springer, Berlin (1993)

    Google Scholar 

  37. Fan, W., Bifet, A.: Mining big data: current status, and forecast to the future. ACM SIGKDD Explor. Newsl. 14(2), 1–5 (2013)

    CrossRef  Google Scholar 

  38. Forrest, S., Nguyen, T., Weimer, W., Le Goues, C.: A genetic programming approach to automated software repair. In: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, GECCO ’09, pp. 947–954. ACM, New York (2009)

    Google Scholar 

  39. Gargantini, A., Heitmeyer, C.: Using model checking to generate tests from requirements specifications. In: ACM SIGSOFT Software Engineering Notes, vol. 24, pp. 146–162. Springer, Berlin (1999)

    CrossRef  Google Scholar 

  40. Gulzar, M.A., Interlandi, M., Yoo, S., Tetali, S.D., Condie, T., Millstein, T., Kim, M.: Bigdebug: debugging primitives for interactive big data processing in spark. In: Proceedings of the 38th International Conference on Software Engineering, pp. 784–795. ACM, New York (2016)

    Google Scholar 

  41. Hailpern, B., Santhanam, P.: Software debugging, testing, and verification. IBM Syst. J. 41(1), 4–12 (2002)

    CrossRef  Google Scholar 

  42. Hand, D.J.: Principles of data mining. Drug Saf. 30(7), 621–622 (2007)

    CrossRef  Google Scholar 

  43. Hassan, A.E., Xie, T.: Software intelligence: the future of mining software engineering data. In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research, pp. 161–166. ACM, New York (2010)

    Google Scholar 

  44. Holzmann, G.J.: Design and Verification of Computer Protocols, Prentice Hall, Upper Saddle River (1991)

    Google Scholar 

  45. Janssen, T., Abreu, R., van Gemund, A.J.: Zoltar: A toolset for automatic fault localization. In: Proceedings of the 2009 IEEE/ACM International Conference on Automated Software Engineering, pp. 662–664. IEEE Computer Society, Washington, D.C. (2009)

    Google Scholar 

  46. Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

    CrossRef  Google Scholar 

  47. Jones, J.A., Harrold, M.J.: Empirical evaluation of the Tarantula automatic fault-localization technique. In: Proceedings of the 20th IEEE/ACM international Conference on Automated Software Engineering, pp. 273–282. ACM, New York (2005)

    Google Scholar 

  48. Jones, J.A., Harrold, M.J., Stasko, J.T.: Visualization for fault localization. In: Proceedings of ICSE 2001 Workshop on Software Visualization, Toronto, Ontario, pp. 71–75. Citeseer (2001)

    Google Scholar 

  49. Jones, J.A., Harrold, M.J., Stasko, J.: Visualization of test information to assist fault localization. In: Proceedings of the 24th International Conference on Software Engineering, pp. 467–477. ACM, New York (2002)

    Google Scholar 

  50. Kaiser, L.W.B.X.G., Passonneau, R.: Bugminer: Software reliability analysis via data mining of bug reports. Delta 12(10), 09–0500 (2011)

    Google Scholar 

  51. Kang, U., Faloutsos, C.: Big graph mining: algorithms and discoveries. ACM SIGKDD Explor. Newsl. 14(2), 29–36 (2013)

    CrossRef  Google Scholar 

  52. Kern, C., Esparza, J.: Automatic error correction of Java programs. In: Proceedings of the 15th International Conference on Formal Methods for Industrial Critical Systems, FMICS’10, pp. 67–81. Springer, Berlin (2010)

    CrossRef  Google Scholar 

  53. Kim, D., Nam, J., Song, J., Kim, S.: Automatic patch generation learned from human-written patches. In: Proceedings of the 2013 International Conference on Software Engineering, pp. 802–811. IEEE, Piscataway (2013)

    Google Scholar 

  54. Ko, A.J., Myers, B.A.: Debugging reinvented: asking and answering why and why not questions about program behavior. In: Proceedings of the 30th International Conference on Software Engineering, pp. 301–310. ACM, New York (2008)

    Google Scholar 

  55. Lamancha, B.P., Polo, M., Caivano, D., Piattini, M., Visaggio, G.: Automated generation of test oracles using a model-driven approach. Inf. Softw. Technol. 55(2), 301–319 (2013)

    CrossRef  Google Scholar 

  56. Laney, D.: 3d data management: controlling data volume, velocity and variety. META Group Res. Note 6(70), 1 (2001)

    Google Scholar 

  57. Last, M., Kandel, A.: Automated test reduction using an info-fuzzy network. In: Software Engineering with Computational Intelligence, pp. 235–258. Springer, Boston (2003)

    CrossRef  Google Scholar 

  58. Last, M., Friedman, M., Kandel, A.: The data mining approach to automated software testing. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 388–396. ACM, New York (2003)

    Google Scholar 

  59. Le Goues, C., Nguyen, T., Forrest, S., Weimer, W.: GenProg: a generic method for automatic software repair. IEEE Trans. Softw. Eng. 38(1), 54–72 (2012)

    CrossRef  Google Scholar 

  60. Lin, J., Ryaboy, D.: Scaling big data mining infrastructure: the twitter experience. ACM SIGKDD Explor. Newsl. 14(2), 6–19 (2013)

    CrossRef  Google Scholar 

  61. Ma, Y.S., Kwon, Y.R., Offutt, J.: Inter-class mutation operators for java. In: Proceedings of 13th International Symposium on Software Reliability Engineering, 2002. ISSRE 2003, pp. 352–363. IEEE, Piscataway (2002)

    Google Scholar 

  62. Ma, Y.S., Offutt, J., Kwon, Y.R.: Mujava: a mutation system for Java. In: Proceedings of the 28th International Conference on Software Engineering, pp. 827–830. ACM, New York (2006)

    Google Scholar 

  63. Martinez, M., Monperrus, M.: Astor: evolutionary automatic software repair for Java. arXiv preprint arXiv:1410.6651 (2014)

    Google Scholar 

  64. Martinez, M., Monperrus, M.: Mining software repair models for reasoning on the search space of automated program fixing. Empir. Softw. Eng. 20(1), 176–205 (2015)

    CrossRef  Google Scholar 

  65. McAfee, A., Brynjolfsson, E., Davenport, T.H., Patil, D., Barton, D.: Big data: the management revolution. Harv. Bus. Rev. 90(10), 60–68 (2012)

    Google Scholar 

  66. Mehmood, R.: Disk-based techniques for efficient solution of large Markov chains. Ph.D. Thesis, School of Computer Science, University of Birmingham (2004)

    Google Scholar 

  67. Mehmood, R., Crowcroft, J.: Parallel iterative solution method for large sparse linear equation systems. Tech. Rep. UCAM-CL-TR-650, University of Cambridge, Computer Laboratory (2005). http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-650.pdf

  68. Mehmood, R., Graham, G.: Big data logistics: a health-care transport capacity sharing model. Procedia Comput. Sci. 64, 1107–1114 (2015). https://doi.org/10.1016/j.procs.2015.08.566. http://www.sciencedirect.com/science/article/pii/S1877050915027015. Conference on ENTERprise Information Systems/International Conference on Project MANagement/Conference on Health and Social Care Information Systems and Technologies, CENTERIS/ProjMAN / HCist 2015 October 7–9, 2015

    CrossRef  Google Scholar 

  69. Mehmood, R., Parker, D., Kwiatkowska, M.: An efficient BDD-based implementation of Gauss-Seidel for CTMC analysis. Tech Report, School of Computer Science, University of Birmingham (2003)

    Google Scholar 

  70. Mehmood, R., Crowcroft, J., Hand, S., Smith, S.: Grid-level computing needs pervasive debugging. In: Proceedings of the 6th IEEE/ACM International Workshop on Grid Computing, pp. 186–193. IEEE Computer Society, Washington, D.C. (2005)

    Google Scholar 

  71. Mehmood, R., Faisal, M.A., Altowaijri, S.: Future Networked Healthcare Systems: A Review and Case Study. In: Boucadair, M., Jacquenet, C. (eds.) Handbook of Research on Redesigning the Future of Internet Architectures, pp. 531–558. IGI Global, Hershey (2015). https://doi.org/10.4018/978-1-4666-8371-6.ch022. http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-8371-6.ch022

    CrossRef  Google Scholar 

  72. Mehmood, R., Alam, F., Albogami, N.N., Katib, I., Albeshri, A., Altowaijri, S.M.: Utilearn: A personalised ubiquitous teaching and learning system for smart societies. IEEE Access 5, 2615–2635 (2017). https://doi.org/10.1109/ACCESS.2017.2668840

    CrossRef  Google Scholar 

  73. Mehmood, R., Meriton, R., Graham, G., Hennelly, P., Kumar, M.: Exploring the influence of big data on city transport operations: a Markovian approach. Int. J. Oper. Prod. Manag. 37(1), 75–104 (2017). https://doi.org/10.1108/IJOPM-03-2015-0179.

    CrossRef  Google Scholar 

  74. Memon, A.M., Pollack, M.E., Soffa, M.L.: Automated test oracles for GUIs. In: ACM SIGSOFT Software Engineering Notes, vol. 25, pp. 30–39. ACM, New York (2000)

    CrossRef  Google Scholar 

  75. Microsoft Zune affected by ‘bug’ (2008). http://news.bbc.co.uk/2/hi/technology/7806683.stm

  76. Muhammed, T., Mehmood, R., Albeshri, A., Katib, I.: Ubehealth: A personalized ubiquitous cloud and edge-enabled networked healthcare system for smart cities. IEEE Access 6, 32,258–32,285 (2018). https://doi.org/10.1109/ACCESS.2018.2846609

    Google Scholar 

  77. Naish, L., Lee, H.J., Ramamohanarao, K.: A model for spectra-based software diagnosis. ACM Trans. Softw. Eng. Methodol. 20(3), 11:1–11:32 (2011)

    CrossRef  Google Scholar 

  78. Nguyen, H.D.T., Qi, D., Roychoudhury, A., Chandra, S.: Semfix: Program repair via semantic analysis. In: Proceedings of the 2013 International Conference on Software Engineering, pp. 772–781. IEEE, Piscataway (2013)

    Google Scholar 

  79. Nidhra, S., Dondeti, J.: Black box and white box testing techniques-a literature review. Int. J. Embed. Syst. Appl. 2(2), 29–50 (2012)

    Google Scholar 

  80. Offutt, J., Ma, Y.S., Kwon, Y.R.: The class-level mutants of MuJava. In: Proceedings of the 2006 International Workshop on Automation of Software Test, pp. 78–84. ACM, New York (2006)

    Google Scholar 

  81. Overview of the internet of things. Recommendations ITU-T Y.2060 (2012)

    Google Scholar 

  82. Perkins, J.H., Kim, S., Larsen, S., Amarasinghe, S., Bachrach, J., Carbin, M., Pacheco, C., Sherwood, F., Sidiroglou, S., Sullivan, G., Wong, W.F., Zibin, Y., Ernst, M.D., Rinard, M.: Automatically patching errors in deployed software. In: Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09, pp. 87–102. ACM, New York (2009)

    Google Scholar 

  83. Pytlik, B., Renieris, M., Krishnamurthi, S., Reiss, S.P.: Automated fault localization using potential invariants. arXiv preprint cs/0310040 (2003)

    Google Scholar 

  84. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  85. Raghupathi, W., Raghupathi, V.: Big data analytics in healthcare: promise and potential. Health Inf. Sci. Syst. 2(1), 3 (2014)

    CrossRef  Google Scholar 

  86. Renieres, M., Reiss, S.P.: Fault localization with nearest neighbor queries. In: Proceedings of the 18th IEEE International Conference on Automated Software Engineering, pp. 30–39. IEEE, Piscataway (2003)

    Google Scholar 

  87. Saraph, P., Kandel, A., Last, M.: Test set generation and reduction with artificial neural networks. In: Artificial Intelligence Methods in Software Testing, pp. 101–132. World Scientific, Singapore (2004)

    Google Scholar 

  88. Suma, S., Mehmood, R., Albugami, N., Katib, I., Albeshri, A.: Enabling next generation logistics and planning for smarter societies. Procedia Comput. Sci. 109, 1122–1127 (2017). https://doi.org/10.1016/j.procs.2017.05.440. http://www.sciencedirect.com/science/article/pii/S1877050917311225. 8th International Conference on Ambient Systems, Networks and Technologies, ANT-2017 and the 7th International Conference on Sustainable Energy Information Technology, SEIT 2017, 16–19 May 2017, Madeira

    CrossRef  Google Scholar 

  89. Sun, Y., Han, J.: Mining heterogeneous information networks: a structural analysis approach. Acm SIGKDD Explor. Newsl. 14(2), 20–28 (2013)

    CrossRef  Google Scholar 

  90. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation with Java pathfinder. ACM SIGSOFT Softw. Eng. Notes 29(4), 97–107 (2004)

    CrossRef  Google Scholar 

  91. Wei, Y., Pei, Y., Furia, C.A., Silva, L.S., Buchholz, S., Meyer, B., Zeller, A.: Automated fixing of programs with contracts. In: Proceedings of the 19th International Symposium on Software Testing and Analysis, ISSTA ’10, pp. 61–72. ACM, New York (2010)

    Google Scholar 

  92. Weimer, W., Nguyen, T., Le Goues, C., Forrest, S.: Automatically finding patches using genetic programming. In: Proceedings of the 31st International Conference on Software Engineering, ICSE ’09, pp. 364–374. IEEE Computer Society, Washington, D.C. (2009)

    Google Scholar 

  93. Weimer, W., Forrest, S., Le Goues, C., Nguyen, T.: Automatic program repair with evolutionary computation. Commun. ACM 53(5), 109–116 (2010)

    CrossRef  Google Scholar 

  94. Weyuker, E.J.: On testing non-testable programs. Comput. J. 25(4), 465–470 (1982)

    CrossRef  Google Scholar 

  95. White, D.R., Arcuri, A., Clark, J.A.: Evolutionary improvement of programs. IEEE Trans. Evol. Comput. 15(4), 515–538 (2011)

    CrossRef  Google Scholar 

  96. Zaidman, A., Van Rompaey, B., Demeyer, S., Van Deursen, A.: Mining software repositories to study co-evolution of production & test code. In: 1st International Conference on Software Testing, Verification, and Validation, pp. 220–229. IEEE, Piscataway (2008)

    Google Scholar 

  97. Zhou, Z.Q., Huang, D., Tse, T., Yang, Z., Huang, H., Chen, T.: Metamorphic testing and its applications. In: Proceedings of the 8th International Symposium on Future Software Technology (ISFST 2004), pp. 346–351 (2004)

    Google Scholar 

  98. Zikopoulos, P., Eaton, C., et al.: Understanding big data: analytics for enterprise class hadoop and streaming data. McGraw-Hill, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatmah Yousef Assiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Assiri, F.Y., Mehmood, R. (2020). Software Quality in the Era of Big Data, IoT and Smart Cities. In: Mehmood, R., See, S., Katib, I., Chlamtac, I. (eds) Smart Infrastructure and Applications. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-13705-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13705-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13704-5

  • Online ISBN: 978-3-030-13705-2

  • eBook Packages: EngineeringEngineering (R0)