Skip to main content

Optimizing the Use of Biomarkers in the ER

  • Chapter
  • First Online:
Cardiology in the ER

Abstract

Cardiac biomarkers have emerged as reliable tools to identify bedside myocardial necrosis, ventricular failure, and endogenous fibrinolysis activation, improving the outcome of thousands of patients around the world presenting in the emergency room (ER). However, any biomarker should not be used as a stand-alone test for diagnosis of cardiovascular disease. Although there have been enormous advances in their analytical features increasing clinical operating characteristics, we are still far from the ideal biomarker. Furthermore, any physician should be familiar with the concepts of clinical sensitivity and specificity, as well as predictive values and likelihood ratios. Physicians in charge will be able to request a test, interpret the results, and deliberate their meaning for clinical decision-making in an appropriate manner. The severity of the potential consequences relates to the test being performed, the extent of the difference between the reported result and the true result, as well as the ability of clinicians to recognize the issues related to biomarker testing. During this chapter, we will discuss the basic principles for the proper use of biomarkers, physiology, analytical features, clinical relevance, and challenges and limitations of high-sensitivity cardiac troponins, natriuretic peptides, and D-dimer in the ER. Also, we will address the concepts of predictive values and likelihood ratios as the essential concepts of Bayesian reasoning and its application for the benefit of our patients.

Medicine is a science of uncertainty and an art of probability

–Sir William Osler.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Graham KJ, Strauss CE, Boland LL, Mooney MR, Harris KM, Unger BT, et al. Has the time come for a National Cardiovascular Emergency Care System? Circulation. 2012;125:2035–44.

    Article  Google Scholar 

  2. Thygesen K, Mair J, Mueller C, Huber K, Weber M, Plebani M, et al. Recommendations for the use of natriuretic peptides in acute cardiac care: a position statement from the Study Group on Biomarkers in Cardiology of the ESC Working Group on Acute Cardiac Care. Eur Heart J. 2012;33:2001–6.

    Article  CAS  Google Scholar 

  3. Favaloro EJ, Adcock Funk DM, Lippi G. Pre-analytical variables in coagulation testing associated with diagnostic errors in hemostasis. Lab Med. 2012;43:1.2–10.

    Article  Google Scholar 

  4. Brush JE, Kaul S, Krumholz HM. Troponin testing for clinicians. J Am Coll Cardiol. 2016;68:2365–75.

    Article  Google Scholar 

  5. Brush JE, Krumholz HM. The science of the art of medicine: a guide to medical reasoning. 1st ed: Manakin-Sabot, VA: Dementi Milestone Publishing; 2015.

    Google Scholar 

  6. Jaffe A. The use of biomarkers for acute cardiovascular disease. In: Tubaro M, Vranckx P, editors. The ESC textbook of Acute and Intensive Cardiosvacular Care. 2nd ed. Oxford, England, UK: Oxford University Press; 2014.

    Google Scholar 

  7. Magnette A, Chatelain M, Chatelain B, Ten Cate H, Mullier F. Pre-analytical issues in the haemostasis laboratory: guidance for the clinical laboratories. Thromb J [Internet]. 2016. [cited 2018 Sep 2];14:49. Available from: https://doi.org/10.1186/s12959-016-0123-z.

  8. Simundic A-M, Lippi G. Preanalytical phase--a continuous challenge for laboratory professionals. Biochem Med. 2012;22:145–9.

    Article  Google Scholar 

  9. Saah AJ, Hoover DR. “Sensitivity” and “specificity” reconsidered: the meaning of these terms in analytical and diagnostic settings. Ann Intern Med. 1997;126:91–4.

    Article  CAS  Google Scholar 

  10. Florkowski CM. Sensitivity, specificity, receiver-operating characteristic (ROC) curves and likelihood ratios: communicating the performance of diagnostic tests. Clin Biochem Rev. 2008;29(Suppl 1):S83–7.

    PubMed  PubMed Central  Google Scholar 

  11. Lalkhen AG, McCluskey A. Clinical tests: sensitivity and specificity. Contin Educ Anaesth Crit Care Pain. 2008;8:221–3.

    Article  Google Scholar 

  12. Thygesen K, Mair J, Giannitsis E, Mueller C, Lindahl B, Blankenberg S, et al. How to use high-sensitivity cardiac troponins in acute cardiac care. Eur Heart J. 2012;33:2252–7.

    Article  CAS  Google Scholar 

  13. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD, et al. Third universal definition of myocardial infarction. Circulation. 2012;126:2020–35.

    Article  Google Scholar 

  14. Amsterdam EA, Wenger NK, Brindis RG, Casey DE, Ganiats TG, Holmes DR, et al. 2014 AHA/ACC guideline for the management of patients with non–ST-elevation acute coronary syndromes. J Am Coll Cardiol. 2014;64:e139–228.

    Article  Google Scholar 

  15. Ibanez B, James S, Agewall S, Antunes MJ, Bucciarelli-Ducci C, Bueno H, et al. 2017 ESC guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2018;39:119–77.

    Article  Google Scholar 

  16. Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction. Eur Heart J. 2018;00:1–33.

    Google Scholar 

  17. Westermann D, Neumann JT, Sörensen NA, Blankenberg S. High-sensitivity assays for troponin in patients with cardiac disease. Nat Rev Cardiol. 2017;14:472–83.

    Article  CAS  Google Scholar 

  18. Okyay K, Yildirir A. The preanalytical and analytical factors responsible for false-positive cardiac troponins. Anadolu Kardiyol Derg Anatol J Cardiol. 2015;15:264–5.

    Article  CAS  Google Scholar 

  19. Herman DS, Kavsak PA, Greene DN. Variability and error in cardiac troponin testing. Am J Clin Pathol. 2017;148:281–95.

    Article  CAS  Google Scholar 

  20. Mahajan VS, Jarolim P. How to interpret elevated cardiac troponin levels. Circulation. 2011;124:2350–4.

    Article  Google Scholar 

  21. Wu AHB, Christenson R. The era for high-sensitivity cardiac troponin has begun in the US (finally). J Appl Lab Med AACC Publ. 2017;2:1–3.

    Article  Google Scholar 

  22. Adamson PD, Anderson JA, Brook RD, Calverley PMA, Celli BR, Cowans NJ, et al. Cardiac troponin I and cardiovascular risk in patients with chronic obstructive pulmonary disease. J Am Coll Cardiol. 2018;72:1126–37.

    Article  CAS  Google Scholar 

  23. Schneider ALC, Rawlings AM, Sharrett AR, Alonso A, Mosley TH, Hoogeveen RC, et al. High-sensitivity cardiac troponin T and cognitive function and dementia risk: the atherosclerosis risk in communities study. Eur Heart J. 2014;35:1817–24.

    Article  CAS  Google Scholar 

  24. Matsushita K, Kwak L, Yang C, Pang Y, Ballew SH, Sang Y, et al. High-sensitivity cardiac troponin and natriuretic peptide with risk of lower-extremity peripheral artery disease: the Atherosclerosis Risk in Communities (ARIC) Study. Eur Heart J. 2018;39:2412–9.

    Article  Google Scholar 

  25. Devereaux PJ, Duceppe E, Guyatt G, Tandon V, Rodseth R, Biccard BM, et al. Dabigatran in patients with myocardial injury after non-cardiac surgery (MANAGE): an international, randomised, placebo-controlled trial. Lancet. 2018;391:2325–34.

    Article  CAS  Google Scholar 

  26. Twerenbold R, Boeddinghaus J, Mueller C. Update on high-sensitivity cardiac troponin in patients with suspected myocardial infarction. Eur Heart J Suppl. 2018;20:G2–10.

    Article  Google Scholar 

  27. Lee GR, Browne TC, Guest B, Khan I, Murphy E, McGorrian C, et al. Transitioning high sensitivity cardiac troponin I (hs-cTnI) into routine diagnostic use: more than just a sensitivity issue. Pract Lab Med. 2016;4:62–75.

    Article  CAS  Google Scholar 

  28. Twerenbold R, Boeddinghaus J, Nestelberger T, Wildi K, Rubini Gimenez M, Badertscher P, et al. Clinical use of high-sensitivity cardiac troponin in patients with suspected myocardial infarction. J Am Coll Cardiol. 2017;70:996–1012.

    Article  CAS  Google Scholar 

  29. Eikelboom JW, Connolly SJ, Bosch J, Dagenais GR, Hart RG, Shestakovska O, et al. Rivaroxaban with or without aspirin in stable cardiovascular disease. N Engl J Med. 2017;377:1319–30.

    Article  CAS  Google Scholar 

  30. Sherwood MW, Kristin Newby L. High-sensitivity troponin assays: evidence, indications, and reasonable use. J Am Heart Assoc. 2014;3:e000403.

    PubMed  PubMed Central  Google Scholar 

  31. Chapman AR, Hesse K, Andrews JPM, Lee KK, Anand A, Ferry A, et al. High-sensitivity cardiac troponin I and clinical risk scores in patients with suspected acute coronary syndrome. Eur Heart J [Internet]. 2018 [cited 2018 Sep 12];39. Available from: https://doi.org/10.1093/eurheartj/ehy565.1085/5079282

  32. Braunwald E. Heart failure. JACC Heart Fail. 2013;1:1–20.

    Article  Google Scholar 

  33. Hollinger A, Cerlinskaite K, Bastian K, Mebazaa A. Biomarkers of increased intraventricular pressure: are we ready? Eur Heart J Suppl. 2018;20:G21–7.

    Article  Google Scholar 

  34. Rodriguez D, Garcia-Rivas G, Laresgoiti-Servitje E, Yañez J, Torre-Amione G, Jerjes-Sanchez C. B-type natriuretic peptide reference interval of newborns from healthy and pre-eclamptic women: a prospective, multicentre, cross-sectional study. BMJ Open. 2018;8:e022562.

    Article  Google Scholar 

  35. Mair J, Lindahl B, Giannitsis E, Huber K, Thygesen K, Plebani M, et al. Will sacubitril-valsartan diminish the clinical utility of B-type natriuretic peptide testing in acute cardiac care? Eur Heart J Acute Cardiovasc Care. 2017;6:321–8.

    Article  Google Scholar 

  36. Kim H-N, Januzzi JL. Natriuretic peptide testing in heart failure. Circulation. 2011;123:2015–9.

    Article  Google Scholar 

  37. Apple FS. Quality specifications for B-type natriuretic peptide assays. Clin Chem. 2005;51:486–93.

    Article  CAS  Google Scholar 

  38. Weber M. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart. 2005;92:843–9.

    Article  Google Scholar 

  39. Apple FS, Wu AHB, Jaffe AS, Panteghini M, Christenson RH, Christenson RH, et al. National Academy of Clinical Biochemistry and IFCC Committee for standardization of markers of cardiac damage laboratory medicine practice guidelines: analytical issues for biomarkers of heart failure. Circulation. 2007;116:e95–8.

    Article  CAS  Google Scholar 

  40. Kim H-L, Kim M-A, Choi D-J, Han S, Jeon E-S, Cho M-C, et al. Gender difference in the prognostic value of N-terminal pro-B type natriuretic peptide in patients with Heart Failure — a report from the Korean Heart Failure registry (KorHF) —. Circ J. 2017;81:1329–36.

    Article  CAS  Google Scholar 

  41. Gaggin H, Januzzi J Jr. Cardiac Biomarkers and Heart Failure [Internet]. Am Coll Cardiol. 2015;. [cited 2018 Sep 12]. Available from: https://www.acc.org/latest-in-cardiology/articles/2015/02/09/13/00/cardiac-biomarkers-and-heart-failure

  42. Quintanilla J, Jerjes-Sanchez C, Perez L, Valdes F, Jimenez V, Trevino AR, et al. Intermediate- to high-risk pulmonary embolism with normal B-type natriuretic peptide. Am J Emerg Med. 2016;34:2463.e1–3.

    Article  Google Scholar 

  43. Januzzi JL, Chen-Tournoux AA, Christenson RH, Doros G, Hollander JE, Levy PD, et al. N-terminal pro–B-type natriuretic peptide in the emergency department. J Am Coll Cardiol. 2018;71:1191–200.

    Article  CAS  Google Scholar 

  44. Baggish AL, van Kimmenade RRJ, Januzzi JL. The differential diagnosis of an elevated amino-terminal pro–B-type natriuretic peptide level. Am J Cardiol. 2008;101:S43–8.

    Article  Google Scholar 

  45. Jespersen CM, Fischer Hansen J. Myocardial stress in patients with acute cerebrovascular events. Cardiology. 2008;110:123–8.

    Article  Google Scholar 

  46. Chen H, Colucci W. Natriuretic peptide measurement in non-heart failure settings – UpToDate [Internet]. 2017 [cited 2018 Sep 5]. Available from: https://0-www.uptodate.com.millenium.itesm.mx/contents/natriuretic-peptide-measurement-in-non-heart-failure-settings?search=Natriuretic%20peptide%20measurement%20in%20non-heart%20failure%20settings&source=search_result&selectedTitle=1~150&usage_type=default&display_rank=1.

  47. Giannitsis E, Mair J, Christersson C, Siegbahn A, Huber K, Jaffe AS, et al. How to use D-dimer in acute cardiovascular care. Eur Heart J Acute Cardiovasc Care. 2017;6:69–80.

    Article  Google Scholar 

  48. Zucker M. D-dimer for the exclusion of venous thromboembolism. Lab Med. 2011;42:503–4.

    Article  Google Scholar 

  49. Hahne K, Lebiedz P, Breuckmann F. Impact of D-Dimers on the differential diagnosis of acute chest pain: current aspects besides the widely known. Clin Med Insights Cardiol [Internet]. 2014 [cited 2018 Sep 13];8s2. Available from: https://doi.org/10.4137/CMC.S15948

    Article  Google Scholar 

  50. Vazquez-Garza E, Jerjes-Sanchez C, Navarrete A, Joya-Harrison J, Rodriguez D. Venous thromboembolism: thrombosis, inflammation, and immunothrombosis for clinicians. J Thromb Thrombolysis. 2017;44:377–85.

    Article  CAS  Google Scholar 

  51. Linkins L-A, Takach Lapner S. Review of D-dimer testing: good, bad, and ugly. Int J Lab Hematol. 2017;39:98–103.

    Article  Google Scholar 

  52. Sadosty AT, Goyal DG, Boie ET, Chiu CK. Emergency department D-dimer testing. J Emerg Med. 2001;21:423–9.

    Article  CAS  Google Scholar 

  53. Cohen A, Ederhy S, Meuleman C, Di Angelantonio E, Dufaitre G, Boccara F. D-dimers in atrial fibrillation: a further step in risk stratification of thrombo-embolism? Eur Heart J. 2007;28:2179–80.

    Article  CAS  Google Scholar 

  54. Riley RS, Gilbert AR, Dalton JB, Pai S, McPherson RA. Widely used types and clinical applications of D-dimer assay. Lab Med. 2016;47:90–102.

    Article  Google Scholar 

  55. Akgul O, Uyarel H, Pusuroglu H, Gul M, Isiksacan N, Turen S, et al. Predictive value of elevated D-dimer in patients undergoing primary angioplasty for ST elevation myocardial infarction. Blood Coagul Fibrinolysis. 2013;24:704–10.

    Article  CAS  Google Scholar 

  56. Milhem A, Ingrand P, Tréguer F, Cesari O, Da Costa A, Pavin D, et al. Exclusion of Intra-Atrial Thrombus Diagnosis Using D-Dimer Assay Before Catheter Ablation of Atrial Fibrillation. JACC Clin Electrophysiol [Internet]. 2018 [cited 2018 Nov 12]; Available from: https://linkinghub.elsevier.com/retrieve/pii/S2405500X18307904.

  57. Alons IME, Jellema K, Wermer MJH, Algra A. D-dimer for the exclusion of cerebral venous thrombosis: a meta-analysis of low risk patients with isolated headache. BMC Neurol [Internet]. 2015 [cited 2018 Nov 12];15:118. Available from: https://doi.org/10.1186/s12883-015-0389-y.

  58. Takach Lapner S, Stevens SM, Woller SC, Snow G, Kearon C. Age-adjusted versus clinical probability-adjusted D-dimer to exclude pulmonary embolism. Thromb Res. 2018;167:15–9.

    Article  CAS  Google Scholar 

  59. Jerjes-Sanchez C, Rodriguez D, Navarrete A, Parra-Cantu C, Joya-Harrison J, Vazquez E, et al. Inferior vena cava filters in pulmonary embolism: a historic controversy. Arch Cardiol México. 2017;87:155–66.

    Article  Google Scholar 

  60. Marik PE, Plante LA. Venous thromboembolic disease and pregnancy. N Engl J Med. 2008;359:2025–33.

    Article  CAS  Google Scholar 

  61. Pulivarthi S, Gurram MK. Effectiveness of D-dimer as a screening test for venous thromboembolism: an update. North Am J Med Sci. 2014;6:491.

    Article  Google Scholar 

  62. Thompson B, Kabrhel C, Pena C. Clinical presentation, evaluation, and diagnosis of the nonpregnant adult with suspected acute pulmonary embolism – UpToDate [Internet]. 2018 [cited 2018 Sep 13]. Available from: https://www.uptodate.com/contents/clinical-presentation-evaluation-and-diagnosis-of-the-nonpregnant-adult-with-suspected-acute-pulmonary-embolism?search=d-dimer&source=search_result&selectedTitle=2~150&usage_type=default&display_rank=2#H746822394.

  63. Zehtabchi S, Kline JA. The art and science of probabilistic decision-making in emergency medicine. Acad Emerg Med. 2010;17:521–3.

    Article  Google Scholar 

  64. McGee S. Chapter 2 – diagnostic accuracy of physical findings. In: McGee S, editor. Evidence-based physical diagnosis [Internet]. 3rd ed. Philadelphia: W.B. Saunders; 2012. p. 9–21. Available from: http://www.sciencedirect.com/science/article/pii/B9781437722079000021.

    Chapter  Google Scholar 

  65. Fagan T. Nomogram for Bayes’s theorem. N Engl J Med 1975;293:257.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Jerjes-Sánchez .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jerjes-Sánchez, C., Rodríguez, D. (2019). Optimizing the Use of Biomarkers in the ER. In: Cardiology in the ER. Springer, Cham. https://doi.org/10.1007/978-3-030-13679-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13679-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13678-9

  • Online ISBN: 978-3-030-13679-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics