Skip to main content

Noise in Atomic Force Microscopy

  • Chapter
  • First Online:
  • 4436 Accesses

Part of the book series: NanoScience and Technology ((NANO))

Abstract

In topographic images, the noise in the vertical position of the tip (i.e. the noise in the tip-sample distance) should be considerably smaller than the topography signal on the sample to be measured. If atomic steps are imaged, the noise should have an amplitude much smaller than 1 Å. In the following we do not consider noise due to floor vibrations or sound, but more fundamental limits of noise due to thermal excitation of the cantilever, or due to the detection limit of the preamplifier detecting the signal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We do not indicate explicitly that the carrier frequency is the shifted resonance frequency \(f'_0\).

References

  1. K. Kobayashi, H. Yamada, K. Matsushige, Reduction of frequency noise and frequency shift by phase shifting elements in frequency modulation atomic force microscopy. Rev. Sci. Instrum. 82, 033702 (2011). https://doi.org/10.1063/1.3557416

    Article  ADS  Google Scholar 

  2. F.J. Giessibl, F. Pielmeier, T. Eguchi, T. An, Y. Hasegawa, Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys. Rev. B 84, 125409 (2011). https://doi.org/10.1103/PhysRevB.84.125409

    Article  ADS  Google Scholar 

  3. G.H. Simon, M. Heyde, H.-P. Rust, Recipes for cantilever parameter determination in dynamic force spectroscopy: spring constant and amplitude. Nanotechnology 18, 255503 (2007). https://doi.org/10.1088/0957-4484/18/25/255503

    Article  ADS  Google Scholar 

  4. J. Welker, F. de Faria Elsner, F.J. Giessibl, Application of the equipartition theorem to the thermal excitation of quartz tuning forks. Appl. Phys. Lett. 99, 084102 (2011), https://doi.org/10.1063/1.3627184

  5. J. Lübbe, M. Temmen, P. Rahe, A. Kühnle, M. Reichling, Determining cantilever stiffness from thermal noise. Beilstein J. Nanotechnol. 4, 227 (2013). https://doi.org/10.3762/bjnano.4.23

    Article  Google Scholar 

  6. S. Morita, F.J. Giessibl, R. Wiesendanger, (eds.), Non-Contact Atomic Force Microscopy, vol. 2 (Springer, Heidelberg, 2009), https://doi.org/10.1007/978-3-642-01495-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bert Voigtländer .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Voigtländer, B. (2019). Noise in Atomic Force Microscopy. In: Atomic Force Microscopy. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-13654-3_17

Download citation

Publish with us

Policies and ethics