Skip to main content

Logarithmic Mathematical Morphology: A New Framework Adaptive to Illumination Changes

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11401)


A new set of mathematical morphology (MM) operators adaptive to illumination changes caused by variation of exposure time or light intensity is defined thanks to the Logarithmic Image Processing (LIP) model. This model based on the physics of acquisition is consistent with human vision. The fundamental operators, the logarithmic-dilation and the logarithmic-erosion, are defined with the LIP-addition of a structuring function. The combination of these two adjunct operators gives morphological filters, namely the logarithmic-opening and closing, useful for pattern recognition. The mathematical relation existing between “classical” dilation and erosion and their logarithmic-versions is established facilitating their implementation. Results on simulated and real images show that logarithmic-MM is more efficient on low-contrasted information than “classical” MM.


  • Mathematical morphology
  • Contrast variations
  • Illumination changes
  • Logarithmic Image Processing
  • Pattern recognition

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-13469-3_53
  • Chapter length: 9 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-13469-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.


  1. Banon, G.J.F., Barrera, J.: Decomposition of mappings between complete lattices by mathematical morphology, part i. general lattices. Sig. Process. 30(3), 299–327 (1993).

  2. Brailean, J., et al.: Evaluating the EM algorithm for image processing using a human visual fidelity criterion. In: ICASSP-91, vol. 4, pp. 2957–2960, April 1991.

  3. Heijmans, H.: Morphological Image Operators. Advances in Electronics and Electron Physics: Supplement, vol. 25. Academic Press, New York (1994)

    MATH  Google Scholar 

  4. Jourlin, M., Pinoli, J.: Logarithmic image processing: the mathematical and physical framework for the representation and processing of transmitted images. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 115, pp. 129–196. Elsevier (2001).

  5. Jourlin, M.: Logarithmic Image Processing: Theory and Applications. Advances in Imaging and Electron Physics, vol. 195. Elsevier Science, New York (2016)

    Google Scholar 

  6. Jourlin, M., Pinoli, J.C.: Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model. Sig. Process. 41(2), 225–237 (1995).

    CrossRef  MATH  Google Scholar 

  7. Lai, Z.R., et al.: Multilayer surface albedo for face recognition with reference images in bad lighting conditions. IEEE Trans. Image Process. 23(11), 4709–4723 (2014).

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Matheron, G.: Eléments pour une théorie des milieux poreux. Masson, Paris (1967)

    Google Scholar 

  9. Meylan, L., Susstrunk, S.: High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans. Image Process. 15(9), 2820–2830 (2006).

    CrossRef  Google Scholar 

  10. Najman, L., Talbot, H.: Mathematical Morphology. ISTE , Wiley (2013)

    Google Scholar 

  11. Navarro, L., Courbebaisse, G., Jourlin, M.: Chapter two - logarithmic wavelets. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 183, pp. 41–98. Elsevier (2014).

  12. Navarro, L., Deng, G., Courbebaisse, G.: The symmetric logarithmic image processing model. Digit. Sig. Process. 23(5), 1337–1343 (2013).

    MathSciNet  CrossRef  Google Scholar 

  13. Noyel, G., et al.: Superimposition of eye fundus images for longitudinal analysis from large public health databases. Biomed. Phys. Eng. Express 3(4), 045015 (2017).

    CrossRef  Google Scholar 

  14. Oppenheim, A.V., et al.: Nonlinear filtering of multiplied and convolved signals. Proc. IEEE 56(8), 1264–1291 (1968).

    CrossRef  Google Scholar 

  15. Peng, Y.T., Cosman, P.C.: Underwater image restoration based on image blurriness and light absorption. IEEE Trans. Image Process. 26(4), 1579–1594 (2017).

    MathSciNet  CrossRef  MATH  Google Scholar 

  16. Serra, J.: Image Analysis and Mathematical Morphology: Theoretical Advances, vol. 2. Academic Press, London (1988)

    Google Scholar 

  17. Serra, J., Cressie, N.: Image Analysis and Mathematical Morphology, vol. 1. Academic Press, London (1982)

    Google Scholar 

  18. Sugimura, D., et al.: Enhancing color images of extremely low light scenes based on RGB/NIR images acquisition with different exposure times. IEEE Trans. Image Process. 24(11), 3586–3597 (2015).

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Guillaume Noyel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Noyel, G. (2019). Logarithmic Mathematical Morphology: A New Framework Adaptive to Illumination Changes. In: Vera-Rodriguez, R., Fierrez, J., Morales, A. (eds) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. CIARP 2018. Lecture Notes in Computer Science(), vol 11401. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13468-6

  • Online ISBN: 978-3-030-13469-3

  • eBook Packages: Computer ScienceComputer Science (R0)