Hierarchy-Based Salient Regions: A Region Detector Based on Hierarchies of Partitions

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11401)


This article introduces a novel region detector based on hierarchies of partitions, so-called Hierarchy-Based Salient Regions (HBSR). This approach enables to combine the clues given by a high quality contour detector with a custom salient region detection procedure. The evaluation of the proposed method HBSR with a standard feature detection assessment framework shows that HBSR outperforms the state-of-the-art methods, in average. These promising results may lead to improvements in many computer vision tasks.


Region detector Mathematical morphology Hierarchy of partitions Computer vision 


  1. 1.
    Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Speeded-up robust features (SURF). CVIU 110(3), 346–359 (2008)Google Scholar
  2. 2.
    Bosilj, P., Kijak, E., Lefèvre, S.: Beyond MSER: Maximally Stable Regions using Tree of Shapes. In: BMVC. Swansea, United Kingdom (2015)Google Scholar
  3. 3.
    Cousty, J., Najman, L., Perret, B.: Constructive Links between some morphological hierarchies on edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 86–97. Springer, Heidelberg (2013). Scholar
  4. 4.
    Dollár, P., Zitnick, C.L.: Fast edge detection using structured forests. IEEE TPAMI 37(8), 1558–1570 (2015)CrossRefGoogle Scholar
  5. 5.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV, pp. 1150–1157 (1999)Google Scholar
  6. 6.
    Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. IVC 22(10), 761–767 (2004)CrossRefGoogle Scholar
  7. 7.
    Meyer, F., Maragos, P.: Morphological scale-space representation with levelings. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 187–198. Springer, Heidelberg (1999). Scholar
  8. 8.
    Mikolajczyk, K., et al.: A comparison of affine region detectors. IJCV 65(1), 43–72 (2005)CrossRefGoogle Scholar
  9. 9.
    Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. IJCV 60(1), 63–86 (2004)CrossRefGoogle Scholar
  10. 10.
    Najman, L., Cousty, J., Perret, B.: Playing with Kruskal: algorithms for morphological trees in edge-weighted graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 135–146. Springer, Heidelberg (2013). Scholar
  11. 11.
    Perret, B., Cousty, J., Guimarães, S.J., Maia, D.S.: Evaluation of hierarchical watersheds. IEEE TIP 27(4), 1676–1688 (2018)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: ICCV, pp. 2564–2571. IEEE Computer Society (2011)Google Scholar
  13. 13.
    Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)CrossRefGoogle Scholar
  14. 14.
    Xu, Y., Monasse, P., Géraud, T., Najman, L.: Tree-based morse regions: a topological approach to local feature detection. IEEE TIP 23(12), 5612–5625 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. PR 37(1), 1–19 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.University Paris-Est, LIGM, A3SI, ESIEEParisFrance
  2. 2.Federal University of Minas Gerais, Computer Science DepartmentBelo HorizonteBrazil
  3. 3.Federal University of Ouro Preto, Computer Science DepartmentOuro PretoBrazil
  4. 4.Pontifical Catholic University of Minas Gerais, Computer Science DepartmentBelo HorizonteBrazil

Personalised recommendations