Skip to main content

Extensions of the Caucal Hierarchy?

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11417))

  • 478 Accesses

Abstract

The Caucal hierarchy contains graphs that can be obtained from finite graphs by alternately applying the unfolding operation and inverse rational mappings. The goal of this work is to check whether the hierarchy is closed under interpretations in logics extending the monadic second-order logic by the unbounding quantifier \(\mathsf U\). We prove that by applying interpretations described in the MSO+\(\mathsf {U^{fin}}\) logic (hence also in its fragment WMSO+\(\mathsf U\)) to graphs of the Caucal hierarchy we can only obtain graphs on the same level of the hierarchy. Conversely, interpretations described in the more powerful MSO+\(\mathsf U\) logic can give us graphs with undecidable MSO theory, hence outside of the Caucal hierarchy.

Work supported by the National Science Centre, Poland (grant no. 2016/22/E/ST6/00041).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Carayol and Wöhrle say about an inverse rational mapping, which is a special case of an MSO-interpretation.

References

  1. Bojańczyk, M.: A bounding quantifier. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 41–55. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30124-0_7

    Chapter  Google Scholar 

  2. Bojańczyk, M.: Weak MSO with the unbounding quantifier. Theory Comput. Syst. 48(3), 554–576 (2011). https://doi.org/10.1007/s00224-010-9279-2

    Article  MathSciNet  MATH  Google Scholar 

  3. Bojańczyk, M., Parys, P., Toruńczyk, S.: The MSO+U theory of (N, \(<\)) is undecidable. In: STACS, pp. 21:1–21:8 (2016). https://doi.org/10.4230/LIPIcs.STACS.2016.21

  4. Bojańczyk, M., Toruńczyk, S.: Weak MSO+U over infinite trees. In: STACS, pp. 648–660 (2012). https://doi.org/10.4230/LIPIcs.STACS.2012.648

  5. Cachat, T.: Higher order pushdown automata, the Caucal hierarchy of graphs and parity games. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 556–569. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45061-0_45

    Chapter  MATH  Google Scholar 

  6. Carayol, A.: Automates infinis, logiques et langages. Ph.D. thesis. Université de Rennes 1 (2006)

    Google Scholar 

  7. Carayol, A., Wöhrle, S.: The Caucal hierarchy of infinite graphs in terms of logic and higher-order pushdown automata. In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 112–123. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24597-1_10

    Chapter  MATH  Google Scholar 

  8. Caucal, D.: On infinite transition graphs having a decidable monadic theory. In: Meyer, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 194–205. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61440-0_128

    Chapter  Google Scholar 

  9. Caucal, D.: On infinite terms having a decidable monadic theory. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 165–176. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45687-2_13

    Chapter  Google Scholar 

  10. Colcombet, T.: A combinatorial theorem for trees. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 901–912. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-8_77

    Chapter  MATH  Google Scholar 

  11. Colcombet, T.: Composition with algebra at the background - on a question by Gurevich and Rabinovich on the monadic theory of linear orderings. In: Bulatov, A.A., Shur, A.M. (eds.) CSR 2013. LNCS, vol. 7913, pp. 391–404. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38536-0_34

    Chapter  MATH  Google Scholar 

  12. Colcombet, T., Löding, C.: Transforming structures by set interpretations. Log. Methods Comput. Sci. 3(2) (2007). https://doi.org/10.2168/LMCS-3(2:4)2007

  13. Courcelle, B.: Monadic second-order definable graph transductions: a survey. Theoret. Comput. Sci. 126(1), 53–75 (1994). https://doi.org/10.1016/0304-3975(94)90268-2

    Article  MathSciNet  MATH  Google Scholar 

  14. Courcelle, B., Walukiewicz, I.: Monadic second-order logic, graph coverings and unfoldings of transition systems. Ann. Pure Appl. Logic 92(1), 35–62 (1998). https://doi.org/10.1016/S0168-0072(97)00048-1

    Article  MathSciNet  MATH  Google Scholar 

  15. Engelfriet, J.: Iterated stack automata and complexity classes. Inf. Comput. 95(1), 21–75 (1991). https://doi.org/10.1016/0890-5401(91)90015-T

    Article  MathSciNet  MATH  Google Scholar 

  16. Haddad, A.: IO vs OI in higher-order recursion schemes. In: FICS, pp. 23–30 (2012). https://doi.org/10.4204/EPTCS.77.4

    Article  Google Scholar 

  17. Hague, M., Murawski, A.S., Ong, C.L., Serre, O.: Collapsible pushdown automata and recursion schemes. In: LICS, pp. 452–461 (2008). https://doi.org/10.1109/LICS.2008.34

  18. Hummel, S., Skrzypczak, M.: The topological complexity of MSO+U and related automata models. Fundam. Inform. 119(1), 87–111 (2012). https://doi.org/10.3233/FI-2012-728

    Article  MathSciNet  MATH  Google Scholar 

  19. Knapik, T., Niwiński, D., Urzyczyn, P.: Higher-order pushdown trees are easy. In: Nielsen, M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 205–222. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6_15

    Chapter  Google Scholar 

  20. Ong, C.L.: On model-checking trees generated by higher-order recursion schemes. In: LICS, pp. 81–90 (2006). https://doi.org/10.1109/LICS.2006.38

  21. Parys, P.: Variants of collapsible pushdown systems. In: CSL, pp. 500–515 (2012). https://doi.org/10.4230/LIPIcs.CSL.2012.500

  22. Parys, P.: Recursion schemes, the MSO logic, and the U quantifier (submitted). https://arxiv.org/abs/1810.04763

  23. Parys, P.: A type system describing unboundedness (submitted). https://hal.archives-ouvertes.fr/hal-01850934

  24. Parys, P.: On the significance of the collapse operation. In: LICS, pp. 521–530 (2012). https://doi.org/10.1109/LICS.2012.62

  25. Penelle, V.: Rewriting higher-order stack trees. Theory Comput. Syst. 61(2), 536–580 (2017). https://doi.org/10.1007/s00224-017-9769-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Walukiewicz, I.: Monadic second-order logic on tree-like structures. Theoret. Comput. Sci. 275(1–2), 311–346 (2002). https://doi.org/10.1016/S0304-3975(01)00185-2

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Mikołaj Bojańczyk, Szymon Toruńczyk, and Arnaud Carayol for discussions preceding the process of creating this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Parys .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Parys, P. (2019). Extensions of the Caucal Hierarchy?. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13435-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13434-1

  • Online ISBN: 978-3-030-13435-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics