Skip to main content

Rule-Based Unification in Combined Theories and the Finite Variant Property

  • Conference paper
  • First Online:
Language and Automata Theory and Applications (LATA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11417))

Abstract

We investigate the unification problem in theories defined by rewrite systems which are both convergent and forward-closed. These theories are also known in the context of protocol analysis as theories with the finite variant property and admit a variant-based unification algorithm. In this paper, we present a new rule-based unification algorithm which can be seen as an alternative to the variant-based approach. In addition, we define forward-closed combination to capture the union of a forward-closed convergent rewrite system with another theory, such as the Associativity-Commutativity, whose function symbols may occur in right-hand sides of the rewrite system. Finally, we present a combination algorithm for this particular class of non-disjoint unions of theories.

C. Ringeissen—This work has received funding from the European Research Council (ERC) under the H2020 research and innovation program (grant agreement No. 645865-SPOOC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://maude.cs.illinois.edu/w/index.php/The_Maude_System.

  2. 2.

    https://github.com/ajayeeralla/BSM.

References

  1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational theories. Theor. Comput. Sci. 367(1–2), 2–32 (2006)

    Article  MathSciNet  Google Scholar 

  2. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, New York (1998)

    Book  Google Scholar 

  3. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories: combining decision procedures. J. Symb. Comput. 21(2), 211–243 (1996)

    Article  MathSciNet  Google Scholar 

  4. Basin, D., Mödersheim, S., Viganò, L.: An on-the-fly model-checker for security protocol analysis. In: Snekkenes, E., Gollmann, D. (eds.) ESORICS 2003. LNCS, vol. 2808, pp. 253–270. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39650-5_15

    Chapter  Google Scholar 

  5. Blanchet, B.: Modeling and verifying security protocols with the applied Pi calculus and ProVerif. Found. Trends Priv. Secur. 1(1–2), 1–135 (2016)

    Google Scholar 

  6. Bouchard, C., Gero, K.A., Lynch, C., Narendran, P.: On forward closure and the finite variant property. In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 327–342. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40885-4_23

    Chapter  Google Scholar 

  7. Ciobâcă, S., Delaune, S., Kremer, S.: Computing knowledge in security protocols under convergent equational theories. J. Autom. Reasoning 48(2), 219–262 (2012)

    Article  MathSciNet  Google Scholar 

  8. Comon-Lundh, H., Delaune, S.: The finite variant property: how to get rid of some algebraic properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 294–307. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32033-3_22

    Chapter  Google Scholar 

  9. Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Talcott, C.: Built-in variant generation and unification, and their applications in Maude 2.7. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 183–192. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40229-1_13

    Chapter  Google Scholar 

  10. Eeralla, A.K., Erbatur, S., Marshall, A.M., Ringeissen, C.: Unification in non-disjoint combinations with forward-closed theories. http://hal.inria.fr

  11. Eeralla, A.K., Lynch, C.: Bounded ACh Unification. CoRR abs/1811.05602 (2018). http://arxiv.org/abs/1811.05602

  12. Erbatur, S., Kapur, D., Marshall, A.M., Narendran, P., Ringeissen, C.: Hierarchical combination. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 249–266. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_17

    Chapter  Google Scholar 

  13. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.) FOSAD 2007-2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03829-7_1

    Chapter  MATH  Google Scholar 

  14. Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termination. J. Log. Algebr. Program. 81(7–8), 898–928 (2012)

    Article  MathSciNet  Google Scholar 

  15. Jouannaud, J., Kirchner, H.: Completion of a set of rules modulo a set of equations. SIAM J. Comput. 15(4), 1155–1194 (1986). https://doi.org/10.1137/0215084

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirchner, C., Klay, F.: Syntactic theories and unification. In: Logic in Computer Science 1990 Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, LICS 1990, pp. 270–277, June 1990. https://doi.org/10.1109/LICS.1990.113753

  17. Lynch, C., Morawska, B.: Basic syntactic mutation. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 471–485. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45620-1_37

    Chapter  Google Scholar 

  18. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN prover for the symbolic analysis of security protocols. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 696–701. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_48

    Chapter  Google Scholar 

  19. Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program. 154, 3–41 (2018)

    Article  Google Scholar 

  20. Nipkow, T.: Proof transformations for equational theories. In: Logic in Computer Science 1990 Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science, LICS 1990, pp. 278–288 June 1990

    Google Scholar 

  21. Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational theories. J. Symb. Comput. 8, 51–99 (1989)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Ringeissen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eeralla, A.K., Erbatur, S., Marshall, A.M., Ringeissen, C. (2019). Rule-Based Unification in Combined Theories and the Finite Variant Property. In: Martín-Vide, C., Okhotin, A., Shapira, D. (eds) Language and Automata Theory and Applications. LATA 2019. Lecture Notes in Computer Science(), vol 11417. Springer, Cham. https://doi.org/10.1007/978-3-030-13435-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13435-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13434-1

  • Online ISBN: 978-3-030-13435-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics