Abela, J., Coste, F., Spina, S.: Mutually compatible and incompatible merges for the search of the smallest consistent DFA. In: ICGI, pp. 28–39 (2004)
CrossRef
Google Scholar
Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)
MathSciNet
CrossRef
Google Scholar
Asín, R., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E.: Cardinality networks: a theoretical and empirical study. Constraints 16(2), 195–221 (2011)
MathSciNet
CrossRef
Google Scholar
Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Commun. 25(2), 97–116 (2012)
MathSciNet
MATH
Google Scholar
Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability, Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)
Google Scholar
Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972)
MathSciNet
CrossRef
Google Scholar
Bugalho, M.M.F., Oliveira, A.L.: Inference of regular languages using state merging algorithms with search. Pattern Recognit. 38(9), 1457–1467 (2005)
CrossRef
Google Scholar
Coste, F., Nicolas, J.: Regular inference as a graph coloring problem. In: IWGI (1997)
Google Scholar
Coste, F., Nicolas, J.: How considering incompatible state mergings may reduce the DFA induction search tree. In: ICGI, pp. 199–210 (1998)
Google Scholar
Eén, N., Sörensson, N.: Translating Pseudo-Boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006)
MATH
Google Scholar
Gent, I.P., Nightingale, P.: A new encoding of all different into SAT. In: Workshop on Modelling and Reformulating Constraint Satisfaction Problems, pp. 95–110 (2004)
Google Scholar
Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automatically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497. Springer, Heidelberg (2006). https://doi.org/10.1007/11814771_40
CrossRef
Google Scholar
Heule, M.J.H., Verwer, S.: Exact DFA identification using SAT solvers. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 66–79. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15488-1_7
CrossRef
Google Scholar
Heule, M., Verwer, S.: Software model synthesis using satisfiability solvers. Empir. Softw. Eng. 18(4), 825–856 (2013)
CrossRef
Google Scholar
de la Higuera, C.: A bibliographical study of grammatical inference. Pattern Recognit. 38(9), 1332–1348 (2005)
CrossRef
Google Scholar
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation - International Edition, 2nd edn. Addison-Wesley, Boston (2003)
MATH
Google Scholar
Lang, K.J.: Faster algorithms for finding minimal consistent DFAs. Technical report, NEC Research Institute (1999)
Google Scholar
Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo one DFA learning competition and a new evidence-driven state merging algorithm. In: Honavar, V., Slutzki, G. (eds.) ICGI 1998. LNCS, vol. 1433, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054059
CrossRef
Google Scholar
Morgado, A., Heras, F., Liffiton, M.H., Planes, J., Marques-Silva, J.: Iterative and core-guided MaxSAT solving: a survey and assessment. Constraints 18(4), 478–534 (2013)
MathSciNet
CrossRef
Google Scholar
Neider, D.: Applications of automata learning in verification and synthesis. Ph.D. thesis, RWTH Aachen University (2014)
Google Scholar
Neider, D., Jansen, N.: Regular model checking using solver technologies and automata learning. In: NFM, pp. 16–31 (2013)
Google Scholar
Oliveira, A.L., Marques-Silva, J.: Efficient algorithms for the inference of minimum size DFAs. Mach. Learn. 44(1/2), 93–119 (2001)
CrossRef
Google Scholar
Sinz, C.: Towards an optimal CNF encoding of Boolean cardinality constraints. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 827–831. Springer, Heidelberg (2005). https://doi.org/10.1007/11564751_73
CrossRef
MATH
Google Scholar
Trakhtenbrot, B.A., Barzdin, Y.M.: Finite Automata: Behavior and Synthesis. North-Holland Publishing Company, Amsterdam (1973)
MATH
Google Scholar
Ulyantsev, V., Tsarev, F.: Extended finite-state machine induction using SAT-solver. In: ICMLA, pp. 346–349 (2011)
Google Scholar
Ulyantsev, V., Zakirzyanov, I., Shalyto, A.: BFS-based symmetry breaking predicates for DFA identification. In: Dediu, A.-H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) LATA 2015. LNCS, vol. 8977, pp. 611–622. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15579-1_48
CrossRef
Google Scholar
Verwer, S., Hammerschmidt, C.A.: flexfringe: a passive automaton learning package. In: ICSME, pp. 638–642 (2017)
Google Scholar
Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA: a competition to encourage the development and assessment of software model inference techniques. Empir. Softw. Eng. 18(4), 791–824 (2013)
CrossRef
Google Scholar
Wieman, R., Aniche, M.F., Lobbezoo, W., Verwer, S., van Deursen, A.: An experience report on applying passive learning in a large-scale payment company. In: ICSME, pp. 564–573 (2017)
Google Scholar
Zakirzyanov, I., Shalyto, A., Ulyantsev, V.: Finding all minimum-size DFA consistent with given examples: SAT-based approach. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 117–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_9
CrossRef
Google Scholar