A Discrete Fractional Fourier Transform

  • Rafael G. Campos
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


Some properties of the XFT as a discrete fractional Fourier transform and as a linear canonical transform are given in this chapter. The eigenvectors of the discrete fractional Fourier transform are obtained and the discrete canonical coherent states are studied. An algorithm to compute a fast linear canonical transform and an application to digital steganography are also given.


Fractional Fourier transform Fast linear canonical transform XFT Eigenvectors Canonical coherent states Steganography 


  1. 2.
    S.T. Ali, J.P. Antoine, and J.P. Gazeau. Coherent States, Wavelets, and Their Generalizations. Springer-Verlag, New York, 2014.CrossRefzbMATHGoogle Scholar
  2. 3.
    L.B. Almeida. The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process., 42(11):3084–3091, 1994.CrossRefGoogle Scholar
  3. 6.
    N.M. Atakishiyev, L.E. Vicent, and K.B Wolf. Continuous vs. discrete fractional Fourier transforms. J. Comput. Appl. Math., 107:73–95, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 19.
    A. Bultheel and H. Martínez-Sulbaran. Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal., 16:182–202, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 31.
    R.G. Campos and J. Figueroa. A fast algorithm for the linear canonical transform. Signal Process., 91:1444–1447, 2011.CrossRefzbMATHGoogle Scholar
  6. 32.
    R.G. Campos, J.Rico-Melgoza, and E. Chávez. A new formulation of the fast fractional Fourier fransform. SIAM J. Sci. Comput., 34(2):A1110–A1125, 2012.CrossRefzbMATHGoogle Scholar
  7. 34.
    R.G. Campos and F. Marcellán. Quadratures and integral transforms arising from generating functions. Appl. Math. Comput., 297:8–18, 2017.MathSciNetzbMATHGoogle Scholar
  8. 40.
    A. Candan, M.A. Kutay, and H.M. Ozaktas. The discrete fractional Fourier transform. IEEE Trans. Signal Process., 48:1329–1337, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 42.
    S.A. Collins. Lens-system diffraction integral written in terms of matrix optics. J. Opt. Soc. Am., 60:1168–1177, 1970.CrossRefGoogle Scholar
  10. 43.
    E.U. Condon. Immersion of the Fourier transform in a continuous group of functional transformations. Proc. Nat. Acad. Sci. (USA), 23:158–164, 1937.CrossRefzbMATHGoogle Scholar
  11. 46.
    X. Deng, Y. Li, D. Fan, and Y. Qiu. A fast algorithm for fractional Fourier transform. Opt. Commun., 138:270–274, 1997.CrossRefGoogle Scholar
  12. 48.
    V.V. Dodonov. Nonclassical states in quantum optics: a ’squeezed’ review of the first 75 years. J. Opt. B: Quantum Semiclass. Opt., 4:R1–R33, 2002.MathSciNetCrossRefGoogle Scholar
  13. 52.
    T. Erseghe, P. Kraniauskas, and G. Cariolaro. Unified fractional Fourier transform and sampling theorem. IEEE Trans. Signal Process., 47:3419–3423, 1999.CrossRefzbMATHGoogle Scholar
  14. 59.
    D. Galetti and M.A. Marchiolli. Discrete coherent states and probability distributions in finite-dimensional spaces. Ann. Phys. (N. Y.), 249:454–480, 1996.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 62.
    J.P. Gazeau. Coherent States in Quantum Physics. Wiley-VCH Verlag, Weinheim, 2009.CrossRefGoogle Scholar
  16. 77.
    J.J. Healy, M.A. Kutay, H.M. Ozaktas, and J.T. Sheridan, editors. Linear Canonical Transforms. Theory and Applications. Springer Science+Business Media, New York, 2016.zbMATHGoogle Scholar
  17. 90.
    J.R. Klauder and B.S. Skagerstam. Coherent States: Applications in Physics and Mathematical Physics. World Scientific Publishing, Singapore, 1985.CrossRefzbMATHGoogle Scholar
  18. 99.
    S. Liberman and K.B Wolf. Independent simultaneous discoveries visualized through network analysis: the case of linear canonical transforms. Scientometrics, 104:715–735, 2015.CrossRefGoogle Scholar
  19. 100.
    S. Liberman and K.B Wolf. The structural development of linear canonical transforms. Phys. Atom. Nucl., 80:814–821, 2017.CrossRefGoogle Scholar
  20. 110.
    M. Moshinsky and C. Quesne. Linear canonical transformations and their unitary representations. J. Math. Phys., 12:1772–1783, 1971.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 112.
    V. Namias. The fractional order Fourier transform and its application to quantum mechanics. J. Inst. Math. Appl., 25:241–265, 1980.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 114.
    S. Odake and R. Sasaki. Exactly solvable ’discrete’ quantum mechanics; shape invariance, Heisenberg solutions, annihilation-creation operators and coherent states. Prog. Theor. Phys., 119:663–700, 2008.CrossRefzbMATHGoogle Scholar
  23. 117.
    H.M. Ozaktas, O. Ankan, M.A. Kutay, and G. Bozdaği. Digital computation of the fractional Fourier transform. IEEE Trans. Signal Process., 44:2141–2150, 1996.CrossRefGoogle Scholar
  24. 118.
    H.M. Ozaktas, Z. Zalevsky, and M.A. Kutay. The Fractional Fourier Transform with Applications in Optics and Signal Processing. John Wiley and Sons, Inc., Chichester, 2001.Google Scholar
  25. 121.
    A. Perelomov. Generalized Coherent States and Their Applications. Springer-Verlag, Berlin, 1986.CrossRefzbMATHGoogle Scholar
  26. 122.
    A.M. Perelomov. On the completeness of a system of coherent states. Theor. Math. Phys., 6:156–164, 1971.CrossRefGoogle Scholar
  27. 141.
    R. Tao, F. Zhang, and Y. Wang. Research progress on discretization of fractional Fourier transform. Sci. China Inf. Sci., 51:859–880, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 151.
    N. Wiener. Hermitian polynomials and Fourier analysis. J. Math. Phys. Camb., 8:70–73, 1929.CrossRefzbMATHGoogle Scholar
  29. 152.
    K.B Wolf. Integral Transforms in Science and Engineering. Plenum Press, New York, 1979.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rafael G. Campos
    • 1
  1. 1.Science DepartmentUniversity of Quintana RooChetumalMexico

Personalised recommendations