In agreement with the vision shared by George Kubler in his book “The shape of time” the city design can be interpreted as a series of ideas in the history of human thinking, divided into four groups (Barnett 2016): Modern city design (Chandigarh), Traditional city design (Rome, Paris), Green city design (Surabaya) and System city design (Dubai). The main idea is that these listed concepts are not opposed to each other or mutually exclusive, rather they interplay with each other, being each one periodically more or less important (according to the duty of the project).
2.1 The Intelligent City Concept
The intelligent city concept is incorporated in the smart city, e.g. a city that is affected by technology, and also the self-organising city, which is without technologies but has a strong flexibility of the urban structure. The paradigm of smart city concept is based on interlacing the technological systems and human intelligence with the aim of better results and improved productivity. In the intelligent city concept, two types of approach can be identified: the top-down and the bottom-up. Both of them are aimed to support human needs by the mean of technology, but while the first one proposes solutions coming from the head of any organisation centre, the second one directly comes from the final users. Both types of systems have four components: Sensors, Collected data, Predictive models and Interfaces.
Here, a main difference between fiction and the real world arises: The fictional story from the introduction only takes the top-down city-concept in account. Talking about the top-down approach, the target is organising urban facilities in the cities to get better response for collective needs (energy management system, traffic control and incident management). The Bjork Ingals Group proposed to BMW to organise a competition having the title: The city of the futures (B. I. Group 2017). The winner of the project presented how people and cars can share space without frightening each other. The intelligence resides both in the vehicle and in the environment through sensors and lightning. Basically, the self-driving car informs the environment about its intentions, e.g. to sensors hidden in the pavement. Then, the latter creates a safe zone called area of influence for pedestrians, where no vehicles are allowed to enter. It has to be remarked how such a smart streets concept can make public open spaces safer for citizen. Passing to the bottom-up approach, it can be sufficient to integrate intelligent systems, that make the city perform better, instead of fundamentally rethinking the city design. Interfaces are the key component for this integration. Bottom-up examples like Copenhagen Wheel (Superpedestrian 2018) or Stuttgart’s Luftdaten (2018) demonstrates that it is not necessary to adjust the city with new static sensors. Equipment that are already around (bicycles, clothes, baskets) could be used for data collecting process as a Mobile Sensors. Additionally, equipping bicycles with sensors effectively turns a city into an interface that collects data in real-time. The integration of such kind of bottom-up intelligence in the city and its surfaces could upgrade the quality of citizen life.
The paradigm of Self-organising city concept performs a kind of urban play-ground where planners use techniques that don’t impose a preconceived plan: the citizen freely share their ideas and projects with each other and, mostly important, with planners. The city is seen as an organism that doesn’t need to follow any human master plan for growing and functioning. The role of the planners is to guide the existing self-organising concepts in the urban environment. Tracing back this concept to the idea of Metabolism in the ‘60s, a Japanese group of architects (e.g. Kisho Kurokawa’s Helix City Project) fused ideas about architectural mega-structures with those of organic biological growth (taking inspiration from the recently discovered DNA). Continuing the chronological time-line, the Hungarian architect Yona Friedman made his contribution in designing a mobile architecture that he called a Spatial Infrastructure (Friedman 1956). In that experimental project the user plays a key role in the city design process. The citizen was allowed to freely use the mobile city’s structural system according to his needs and wishes, which is perfectly in line with the self-organising city concept. In the same period the rising of cybernetics in the field of communication and technology impacted on the architects’ methods and visions (Pask 1969). The main concept is based on the notion that intelligence lies in its capacity to learn from feedbacks. That new vision shifts the role of planner in the design process and opens the necessity to bring new technologies that can help machines to react to a real-time stimulus. By applying this concept to the planning process, an interesting question arises: Could the cities and their buildings learn from their usage and auto-correct themselves into an optimal configuration and anticipating future uses? Also, computer programmes as the SimCity series games (Jonathan Burnett) or the MVRDV Function-mixer (Hartog 2006) shown a good example of how technologies bring new visions in urban planning. The virtual simulation of urban environment explores the use of computer-generated scenarios for having a support in taking decisions and planning solutions. This involvement helps people, municipalities and communities to find optimal configurations. But, projects from the intelligent (smart) concepts are mainly top-down and ignoring the existence of interfaces at all. Although they have sensors, predictive models and collected data which are also parts of the fictional city concept from Minority Report.
2.2 The Cyborg-Society and the Senseable City Concept
“Permit man’s existence in environments which differ radically from those provided by nature as we know it” (Clynes and Kline 1960: 29–33) was the starting point for rethinking the concept of the human body and its extensions and possibilities. This new way of thinking gave the perspective for the first cyborg project: “cyborg is a hybrid capable of more than either the biological or the mechanical system alone can do, with a correspondingly expanded range of possible habitation” (Ratti and Claudel 2016: 42–49). The tools and all innovations people have been aware, allowing humanity to survive in extreme conditions that they otherwise could never adapt. Serving as an additional option to the biological presence defines us as a kind of cyborg. “Human progress was marked by the gradual externalization of functions, from stone knives and axes that extended the capacity of the hand to the externalization of mental functions with the computer.” (Picon 2004: 114–121). If in the past the innovations were created as an enhancement of the physical body, today they are mainly used as an extension of the possibilities of the mind: “… digital technologies have become a dynamic extension of our bodies and minds, demanding a constant and two-way cybernetic exchange in a way that our traditional (one-way) extensions, such as clothing or axes, have never done” (Ratti and Claudel 2016: 42–49). Interesting aspects appeared, as the deep natural involvement of technological system into human environment. “We […] are provided with two types of bodies … the real body which is linked with the real world by means of fluids running inside, and the virtual body linked with the world by the flow of electrons” (Ito 1997: 132). Smartphones became the strongest connection between the two bodies and so recognised as an interface. It additionally extends humans memory and logical capacities in such a marked way that the person is not considered a simple human anymore but kind of an upgraded version of it: a post-human. “A new entity that is born with technology rather than acquiring it … where each individual’s mental and social existence is enable, sustained and improved by technologies.” (Ratti and Claudel 2016: 42–49).
The main technology mentioned are the so-called smart-devices. They are changing the way people think about a city and its infrastructure in a radical way: thanks to the rising of digital networks what before was passive is now active, so every aspect of an urban reality should now be able to be interfaced with smartphones. In simple words, a modern city should give the post-humans an environment suitable for them. With the rising of smart-devices still both methods from the intelligent city in the senseable city concepts, could be found. But with different notion:
-
Tracking as the top-down method where the information is gathered and visualized for decision-makers, stakeholder, city council or researcher (Ratti et al. 2007).
-
Interaction as the bottom-up example with, e.g. QR codes (Foth et al. 2015). The interaction includes human to human, human to companies (marketing) or authorities (information) or human to machine while the layer that carries the QR code is differently (i.e. cloths, streets, buildings, etc.)
The senseable city concept pushes further the interactivity of this innovative way of thinking about POS. In a short period, places became a breathing, living entity acting on a large-scale with the inhabitants (what we previously defined as cyborgs). The latter will create, plug into and interact with this new entity, and so, digital spaces will be naturally interacted and above all spontaneously born onto POS. This reality was, among others, mentioned and explained by Mark Weiser, ac-cording to which the interfaces would find no places anymore since everything will be intimately absorbed into the city. Allowing then a complete merging between the digital and the physical spaces a “new way of thinking about computers in the world, one that takes into account the natural human environment and allows the computers themselves to vanish into the background.” (Weiser 1991: 1). Another realisation of the senseable city concept can be found in the so-called boards, e.g. interactive screens disseminated all along the cities (Fig. 1) where POS infrastructure are transformed into intercommunicating interfaces, away from smartphones. Basically, these new generation billboards are in effect web browser applications capable of all the tracking and advertising functionalities known from any desktop website. So, what was oriented towards a single user before is now becoming public: a desktop browser turns to a public display where advertises take place, all integrated into the POS. This scene of the 2002’s Minority Report became reality.
In summary, the senseable city concept can be resumed as the “Technology recedes into the background, and interaction is brought to the fore. Buildings and public open spaces can be simple-rather than voluptuous and shocking – but even more integrally vibrant and living” (Ratti and Claudel 2016: 62–73).