Skip to main content

Radiology-Pathology Correlation

  • Chapter
  • First Online:
Interventional Breast Procedures
  • 526 Accesses

Abstract

Rad-Path correlation is the final step in diagnostic process. It encompasses the critical review of all relevant imaging studies including imaging-guided biopsy and sample radiographs. Radiologist wants to confirm that the correct lesion was targeted at biopsy, sampling was accurate, and samples were representative. Pathological diagnosis is then correlated with lesion’s imaging appearance and its assessed pre-biopsy likelihood of malignancy. Patient’s clinical data including personal and family history and clinical presentation are taken into account. Recommendation for further management is made based on interplay of imaging findings, pathological diagnosis, and clinical picture. In difficult and discordant cases, multidisciplinary approach and clinical thinking should drive the management decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bassett LW, Mahoney MC, Apple SK. Interventional breast imaging: current procedures and assessing for concordance with pathology. Radiol Clin N Am. 2007;45(5):881–94.

    Article  Google Scholar 

  2. Youk JH, Kim EK, Kim MJ, Ko KH, Kwak JY, Son EJ, Choi J, Kang HY. Concordant or discordant? Imaging-pathology correlation in a sonography-guided core needle biopsy of a breast lesion. Korean J Radiol. 2011;12(2):232–40.

    Article  Google Scholar 

  3. D’Orsi CJ, Sickles EA, Mendelson EB, Morris EA, et al. ACR BI-RADS® atlas, breast imaging reporting and data system. Reston: American College of Radiology; 2013.

    Google Scholar 

  4. Liberman L. Percutaneous image-guided core breast biopsy. Radiol Clin N Am. 2002;40:483–50.

    Article  Google Scholar 

  5. Bagnall MJ, Evans AJ, Wilson AR, Burrell H, Pinder SE, Ellis IO. When have mammographic calcifications been adequately sampled at needle core biopsy? Clin Radiol. 2000;55(7):548–53.

    Article  CAS  Google Scholar 

  6. Eby PR, Ochsner JE, DeMartini WB, Allison KH, Peacock S, Lehman CD. Frequency and upgrade rates of atypical ductal hyperplasia diagnosed at stereotactic vacuum-assisted breast biopsy: 9-versus 11-gauge. AJR Am J Roentgenol. 2009;192(1):229–34.

    Article  Google Scholar 

  7. Lourenco AP, Mainiero MB, Lazarus E, Giri D, Schepps B. Stereotactic breast biopsy: comparison of histologic underestimation rates with 11- and 9-gauge vacuum-assisted breast biopsy. AJR Am J Roentgenol. 2007;189(5):W275–9.

    Article  Google Scholar 

  8. Brem RF, Schoonjans JM, Goodman SN, Nolten A, Askin FB, Gatewood OM. Nonpalpable breast cancer: percutaneous diagnosis with 11- and 8-gauge stereotactic vacuum-assisted biopsy devices. Radiology. 2001;219(3):793–6.

    Article  CAS  Google Scholar 

  9. Ruggirello I, Nori J, Desideri I, Saieva C, Giannotti E, Bicchierai G, De Benedetto D, Francolini G, Bianchi S, Vezzosi V, Sanchez L, Susini T, Orzalesi L, Meattini I, Livi L, Miele V. Stereotactic vacuum-assisted breast biopsy: comparison between 11- and 8-gauge needles. Eur J Surg Oncol. 2017;43(12):2257–60.

    Article  Google Scholar 

  10. Parikh J, Tickman R. Image-guided tissue sampling: where radiology meets pathology. Breast J. 2005;11(6):403–9.

    Article  Google Scholar 

  11. Sorace J, Aberle DR, Elimam D, Lawvere S, Tawfik O, Wallace WD. Integrating pathology and radiology disciplines: an emerging opportunity? BMC Med. 2012;10:100.

    Article  Google Scholar 

  12. Nomenclature of antigen names. http://cvc.dfci.harvard.edu/cvccgi/tadb/nomenclature.pl. Accessed on 31 Oct 2018

  13. Allison KH, Rendi MH, Peacock S, Morgan T, Elmore JG, Weaver DL. Histological features associated with diagnostic agreement in atypical ductal hyperplasia of the breast: illustrative cases from the B-path study. Histopathology. 2016;69(6):1028–46.

    Article  Google Scholar 

  14. Jain RK, Mehta R, Dimitrov R, Larsson LG, Musto PM, Hodges KB, Ulbright TM, Hattab EM, Agaram N, Idrees MT, Badve S. Atypical ductal hyperplasia: interobserver and intraobserver variability. Mod Pathol. 2011;24(7):917–23. https://doi.org/10.1038/modpathol.2011.66. Epub 2011 Apr 29.

    Article  PubMed  Google Scholar 

  15. Tozbikian G, Brogi E, Vallejo CE, Giri D, Murray M, Catalano J, Olcese C, Van Zee KJ, Wen HY. Atypical ductal hyperplasia bordering on ductal carcinoma in situ. Int J Surg Pathol. 2017;25(2):100–7.

    Article  Google Scholar 

  16. Samples LS, Rendi MH, Frederick PD, Allison KH, Nelson HD, Morgan TR, Weaver DL, Elmore JG. Surgical implications and variability in the use of the flat epithelial atypia diagnosis on breast biopsy specimens. Breast. 2017;34:34–43.

    Article  Google Scholar 

  17. Lesslie MD, Parikh JR. Multidisciplinary tumor boards: an opportunity for radiologists to demonstrate value. Acad Radiol. 2017;24(1):107–10.

    Article  Google Scholar 

  18. Krishnamurthy S, Bevers T, Kuerer HM, Smith B, Yang WT. AJR paradigm shifts in breast care delivery: impact of imaging in a multidisciplinary environment. AJR Am J Roentgenol. 2017;208(2):248–55.

    Article  Google Scholar 

  19. Foster TJ, Bouchard-Fortier A, Olivotto IA, Quan ML. Effect of multidisciplinary case conferences on physician decision making: breast diagnostic rounds. Cureus. 2016;8(11):e895.

    PubMed  PubMed Central  Google Scholar 

  20. Esserman LE, Cura MA, DaCosta D. Recognizing pitfalls in early and late migration of clip markers after imaging-guided directional vacuum-assisted biopsy. Radiographics. 2004;24(1):147–56.

    Article  Google Scholar 

  21. Sohn YM, Yoon JH, Kim EK, Moon HJ, Kim MJ. Percutaneous ultrasound-guided vacuum-assisted removal versus surgery for breast lesions showing imaging-histology discordance after ultrasound-guided core-needle biopsy. Korean J Radiol. 2014;15(6):697–703.

    Article  Google Scholar 

  22. Son EJ, Kim EK, Youk JH, Kim MJ, Kwak JY, Choi SH. Imaging-histologic discordance after sonographically guided percutaneous breast biopsy: a prospective observational study. Ultrasound Med Biol. 2011;37(11):1771–8.

    Article  Google Scholar 

  23. Soyder A, Taşkin F, Ozbas S. Imaging-histological discordance after sonographically guided percutaneous breast core biopsy. Breast Care. 2015;10(1):33–7.

    Article  Google Scholar 

  24. Berg WA. Image-guided breast biopsy and management of high-risk lesions. Radiol Clin N Am. 2004;42:935–46.

    Article  Google Scholar 

  25. Mooney KL, Bassett LW, Apple SK. Upgrade rates of high-risk breast lesions diagnosed on core needle biopsy: a single-institution experience and literature review. Mod Pathol. 2016;29(12):1471–84.

    Article  CAS  Google Scholar 

  26. Neal L, Sandhu NP, Hieken TJ, Glazebrook KN, Mac Bride MB, Dilaveri CA, Wahner-Roedler DL, Ghosh K, Visscher DW. Diagnosis and management of benign, atypical, and indeterminate breast lesions detected on core needle biopsy. Mayo Clin Proc. 2014;89(4):536–47.

    Article  Google Scholar 

  27. Javitt MC. Diagnosis and management of high-risk breast lesions: Aristotle’s dilemma. Am J Roentgenol. 2012;198:246–8.

    Article  Google Scholar 

  28. Hartmann LC, Sellers TA, Frost MH, Lingle WL, Degnim AC, Ghosh K, Vierkant RA, Maloney SD, Pankratz VS, Hillman DW, Suman VJ, Johnson J, Blake C, Tlsty T, Vachon CM, Melton LJ, Visscher DW. Benign breast disease and the risk of breast cancer. N Engl J Med. 2005;353(3):229–37.

    Article  CAS  Google Scholar 

  29. London SJ, Connolly JL, Schnitt SJ, Colditz GA. A prospective study of benign breast disease and the risk of breast cancer. JAMA. 1992;267(7):941–4.

    Article  CAS  Google Scholar 

  30. Brewster AM, Thomas P, Brown P, Coyne R, Yan Y, Checka C, Middleton L, Do KA, Bevers T. A system-level approach to improve the uptake of anti-estrogen preventive therapy among women with atypical hyperplasia and lobular cancer in situ. Cancer Prev Res. 2018;11:295–302.

    Article  CAS  Google Scholar 

  31. Purcell CA, Norris HJ. Intraductal proliferations of the breast: a review of histologic criteria for atypical intraductal hyperplasia and ductal carcinoma in situ, including apocrine and papillary lesions. Ann Diagn Pathol. 1998;2(2):135–45.

    Article  CAS  Google Scholar 

  32. Brennan ME, Turner RM, Ciatto S, Marinovich ML, French JR, Macaskill P, Houssami N. Ductal carcinoma in situ at core-needle biopsy: meta-analysis of underestimation and predictors of invasive breast cancer. Radiology. 2011;260(1):119–28.

    Article  Google Scholar 

  33. Han SH, Kim M, Chung YR, Yun B, Jang M, Kim SM, Kang E, Kim EK, Park SY. Benign intraductal papilloma without atypia on core needle biopsy has a low rate of upgrading to malignancy after excision. J Breast Cancer. 2018;21(1):80–6.

    Article  Google Scholar 

  34. Ko D, Kang E, Park SY, Kim SM, Jang M, Yun B, Chae S, Jang Y, Kim HJ, Kim SW, Kim EK. The management strategy of benign solitary intraductal papilloma on breast core biopsy. Clin Breast Cancer. 2017;17(5):367–72.

    Article  Google Scholar 

  35. Pareja F, Corben AD, Brennan SB, Murray MP, Bowser ZL, Jakate K, Sebastiano C, Morrow M, Morris EA, Brogi E. Breast intraductal papillomas without atypia in radiologic-pathologic concordant core-needle biopsies: rate of upgrade to carcinoma at excision. Cancer. 2016;122(18):2819–27.

    Article  Google Scholar 

  36. Calhoun BC, Sobel A, White RL, Gromet M, Flippo T, Sarantou T, Livasy CA. Management of flat epithelial atypia on breast core biopsy may be individualized based on correlation with imaging studies. Mod Pathol. 2015;28(5):670–6.

    Article  Google Scholar 

  37. Lamb LR, Bahl M, Gadd MA, Lehman CD. Flat epithelial atypia: upgrade rates and risk-stratification approach to support informed decision making. J Am Coll Surg. 2017;225(6):696–701.

    Article  Google Scholar 

  38. Susnik B, Day D, Abeln E, Bowman T, Krueger J, Swenson KK, Tsai ML, Bretzke ML, Lillemoe TJ. Surgical outcomes of lobular neoplasia diagnosed in core biopsy: prospective study of 316 cases. Clin Breast Cancer. 2016;16(6):507–13.

    Article  Google Scholar 

  39. Ha SM, Cha JH, Shin HJ, Chae EY, Choi WJ, Kim HH. Mucocelelike lesions in the breast: radiologic and clinicopathologic correlations with upgrade rate. AJR Am J Roentgenol. 2018;210(6):1386–94.

    Article  Google Scholar 

  40. A trial comparing surgery with active monitoring for low risk DCIS (LORIS). https://www.cancerresearchuk.org/about-cancer/find-a-clinical-trial/a-trial-comparing-surgery-with-active-monitoring-for-low-risk-dcis-loris. Accessed 31 Oct 2018.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dag Pavic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pavic, D. (2019). Radiology-Pathology Correlation. In: Kuzmiak, C. (eds) Interventional Breast Procedures. Springer, Cham. https://doi.org/10.1007/978-3-030-13402-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13402-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13401-3

  • Online ISBN: 978-3-030-13402-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics