Skip to main content

Estimating Fatigue Related Damage in Alloys under Block-type Non-symmetrical Low-cycle Loading

  • Chapter
  • First Online:
New Achievements in Continuum Mechanics and Thermodynamics

Abstract

Processes of plastic deformation and damage accumulation in polycrystalline structural alloys are investigated under block-type, nonstationary, non-symmetric cyclic loading. In the framework of damage mechanics, a mathematical model is proposed that effectively describes elastoplastic deformation and fatigue related damage accumulation processes under low-cycle loading. This model can be subsumed under three main parts: the relations defining elastoplastic behavior of the material; the equations describing damage accumulation kinetics; the strength criterion of the damaged material. For validating the model, we perform a numerical analysis and a comparison with the data from full-scale experiments.We demonstrate that the proposed model qualitatively and quantitatively describes the main effects of plastic deformation and damage accumulation processes in structural alloys under complex loading scenarios. Moreover, fatigue related lifetime of the structure is accurately captured by this model as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abali BE (2017a) Computational Reality, Solving Nonlinear and Coupled Problems in Continuum Mechanics, Advanced Structured Materials, vol 55. Springer Nature, Singapore

    Google Scholar 

  • Abali BE (2017b) Computational study for reliability improvement of a circuit board. Mechanics of Advanced Materials and Modern Processes 3(1):1–11

    Google Scholar 

  • Altenbach H, Eremeyev V (2014a) Strain rate tensors and constitutive equations of inelastic micropolar materials. International Journal of Plasticity 63:3–17

    Google Scholar 

  • Altenbach H, Eremeyev VA (2014b) Basic equations of continuum mechanics. In: Plasticity of Pressure-Sensitive Materials, Springer, pp 1–47

    Google Scholar 

  • Bodner SR, Lindholm US (1976) Kriteriy prirasheniya povrezhdeniya dlya zavisyashego ot vremeni razrusheniya materialov (in Russian). Trudy Amer Ob-va inzh-meh Ser D Teoret Osnovy inzh Raschetov 100(2):51–58

    Google Scholar 

  • Bondar VS, Danshin VV (2008) Plastichnost. proportsyonalnye i neproportsyonalalnye nagruzheniya (in Russian). M: Fizmatlit p 176

    Google Scholar 

  • Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International journal of plasticity 5(3):247–302

    Google Scholar 

  • Collins J (1984) Povrezhdeniye materialov v konstruktziyah. Analiz. Predskazaniye. Predotvrasheniye (in Russian). M: Mir

    Google Scholar 

  • Eremeyev VA, Skrzat A, Stachowicz F (2016) On FEM evaluation of stress concentration in micropolar elastic materials. Nanoscience and Technology: An International Journal 7(4)

    Google Scholar 

  • Giorgio I, Andreaus U, Scerrato D, dell’Isola F (2016) A visco-poroelastic model of functional adaptation in bones reconstructed with bio-resorbable materials. Biomechanics and modeling in mechanobiology 15(5):1325–1343

    Google Scholar 

  • Hassan T, Taleb L, Krishna S (2008) Influence of non-proportional loading on ratcheting responses and simulations by two recent cyclic plasticity models. International Journal of Plasticity 24(10):1863–1889

    Google Scholar 

  • Huang ZY, Chaboche JL, Wang QY, Wagner D, Bathias C (2014) Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel. Materials Science and Engineering: A 589:34–40

    Google Scholar 

  • Jiang Y, Zhang J (2008) Benchmark experiments and characteristic cyclic plasticity deformation. International Journal of Plasticity 24(9):1481–1515

    Google Scholar 

  • Korotkikh YG (1985) Opisaniye protsessov nakopleniya povrezhdeniy materiala pri neizotermicheskom vyazkoplasticheskom deformirovanii (in Russian). Problemy prochnosti 1:18–23

    Google Scholar 

  • Lemaitre J (1985) Kontinualnaya model povrezhdeniya, ispolzuemaya dlya rascheta razrusheniya plastichnykh materialov (in Russian). Trudy Amer Ob-va inzh-meh Ser D Teoret Osnovy inzh Raschetov 107(1):90–98

    Google Scholar 

  • Lemba (1978) Sisebottom plastichnost pri cyklicheskim nagruzhenii po neproportsionalnym traektoriyam (in Russian). Teoreticheskiye osnovy inzhenernykh raschetov 100(1):108–126

    Google Scholar 

  • Mackenzie J (1950) The elastic constants of a solid containing spherical holes. Proceedings of the Physical Society Section B 63(1):2

    Google Scholar 

  • Makdauel (1985) Eksperimentalnoye izuchenie struktury opredelyayushih uravneniy dlya neproportsionalnoy cyklicheskoy plastichnosti (in Russian). Teoreticheskiye osnovy inzhenernykh raschetov 107(4):98–111

    Google Scholar 

  • Mazière M, Forest S (2015) Strain gradient plasticity modeling and finite element simulation of lüders band formation and propagation. Continuum Mechanics and Thermodynamics 27(1-2):83–104

    Google Scholar 

  • Miehe C, Göktepe S, Diez JM (2009) Finite viscoplasticity of amorphous glassy polymers in the logarithmic strain space. International Journal of Solids and Structures 46(1):181–202

    Google Scholar 

  • Misra A, Poorsolhjouy P (2015) Granular micromechanics model for damage and plasticity of cementitious materials based upon thermomechanics. Mathematics and Mechanics of Solids p 1081286515576821

    Google Scholar 

  • Mitenkov AM, Kaydalov VB, Korotkikh YG (2007) Metody obosnovaniya resursa yaeu (in Russian). Mashinostroyeniye p 445

    Google Scholar 

  • Mitenkov FM, Volkov IA, Igumnov LA (2015) Prikladnaya teoriya plastichnosti (in Russian). Fizmatlit p 284

    Google Scholar 

  • Montáns FJ, Bathe KJ (2005) Computational issues in large strain elasto-plasticity: an algorithm for mixed hardening and plastic spin. International Journal for Numerical Methods in Engineering 63(2):159–196

    Google Scholar 

  • Murakami S (1983) Sushnost mehaniki povrezhdennoy sredy i eyo prilozheniye k teorii anizotropnykh povrerzhdeniy pri polzuchesti (in Russian). TOIR 2:44–50

    Google Scholar 

  • Ohasi, Kavai, Kaito (1985) Neuprugoye povedeniye stali 316 pri mnogoosnykh neproportsionalnykh zyklicheskikh nagruzheniyakh pri povyshennoy temperature (in Russian). Teoreticheskiye osnovy inzhenernykh raschetov 107(2):6–15

    Google Scholar 

  • Papadopoulos P, Lu J (1998) A general framework for the numerical solution of problems in finite elasto-plasticity. Computer Methods in Applied Mechanics and Engineering 159(1-2):1–18

    Google Scholar 

  • Papadopoulos P, Lu J (2001) On the formulation and numerical solution of problems in anisotropic finite plasticity. Computer Methods in Applied Mechanics and Engineering 190(37-38):4889–4910

    Google Scholar 

  • Placidi L (2016) A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-gradient continuum model. Continuum Mechanics and Thermodynamics 28(1-2):119–137

    Google Scholar 

  • Schröder J, Gruttmann F, Löblein J (2002) A simple orthotropic finite elasto–plasticity model based on generalized stress–strain measures. Computational Mechanics 30(1):48–64

    Google Scholar 

  • Soyarslan C, Tekkaya A (2010) A damage coupled orthotropic finite plasticity model for sheet metal forming: Cdm approach. Computational Materials Science 48(1):150–165

    Google Scholar 

  • Taleb L, Cailletaud G, Saï K (2014) Experimental and numerical analysis about the cyclic behavior of the 304L and 316L stainless steels at 350℃. International Journal of Plasticity 61:32–48

    Google Scholar 

  • Tanaka E, Murakami S, Ōoka M (1985a) Effects of plastic strain amplitudes on non-proportional cyclic plasticity. Acta Mechanica 57(3-4):167–182

    Google Scholar 

  • Tanaka E, Murakami S, Ōoka M (1985b) Effects of strain path shapes on non-proportional cyclic plasticity. Journal of the Mechanics and Physics of Solids 33(6):559–575

    Google Scholar 

  • Volkov IA, Igumnov LA (2017) Vvedenie v kontinualnuyu mehaniku povrezhdennoy sredy (in Russian). M: Fizmatlit p 304

    Google Scholar 

  • Volkov IA, Korotkikh YG (2008) Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami (in Russian). Fizmatlit p 424

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco dell’Isola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

dell’Isola, F. et al. (2019). Estimating Fatigue Related Damage in Alloys under Block-type Non-symmetrical Low-cycle Loading. In: Abali, B., Altenbach, H., dell'Isola, F., Eremeyev, V., Öchsner, A. (eds) New Achievements in Continuum Mechanics and Thermodynamics. Advanced Structured Materials, vol 108. Springer, Cham. https://doi.org/10.1007/978-3-030-13307-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13307-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13306-1

  • Online ISBN: 978-3-030-13307-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics