Skip to main content

Engineered Nanoparticle-Based Approaches to the Protection of Plants Against Pathogenic Microorganisms

  • Chapter
  • First Online:
Nanobiotechnology Applications in Plant Protection

Abstract

Plant diseases are a significant biotic limitation, leading to notable crop losses worldwide. There are several approaches to managing and reducing the damage of diseases. The application of chemical pesticides is the most common method and gain rapid control, but they have harmful effects on the environment and on humans. The expansion and use of nanotechnology has had a profound impact on human life and presented a new frontier in almost all fields of industrial application. In the last few decades, interest in research into using nanoparticles has grown. One of the most significant goals of nanotechnology is to produce nanoparticles with the ability to manage and reduce plant diseases. Nanotechnology is one of the modern techniques of material science. The small-sized nanoparticles have shown improved or different characteristics in comparison with bulk materials. In plant diseases, the use of nanoparticles is considered an important approach for the control of different plant pathogens, with eco-friendly features that inhibit and destroy many functions and structures in pathogens. Despite the benefits of nanotechnology in agriculture and extensive research in this field, this science has not yet entered the agricultural market in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Hafez SI, Nafady NA, Abdel-Rahim IR, Shaltout AM, Daròs J-A, Mohamed MA (2016) Assessment of protein silver nanoparticles toxicity against pathogenic Alternaria solani. 3 Biotech 6:199

    Article  PubMed  PubMed Central  Google Scholar 

  • Abdelmalek GA, Salaheldin TA (2016) Silver nanoparticles as a potent fungicide for citrus phytopathogenic fungi. Nanomed Res 3:00065

    Google Scholar 

  • Abkhoo J, Panjehkeh N (2016) Evaluation of antifungal activity of silver nanoparticles on Fusarium oxysporum. Int J Infect 4:e41126

    Article  Google Scholar 

  • Adams LK, Lyon DY, Alvarez PJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  CAS  PubMed  Google Scholar 

  • Ahmad Z, Pandey R, Sharma S, Khuller G (2006) Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 48:171–176

    PubMed  Google Scholar 

  • Ahmed AI, Yadav DR, Lee YS (2016) Applications of nickel nanoparticles for control of Fusarium wilt on lettuce and tomato. Int J Innov Res Sci Eng Technol 5:7378–7385

    Article  Google Scholar 

  • Al-Askar A, Hafez E, Kabeil S, Meghad A (2013) Bioproduction of silver-nano particles by Fusarium oxysporum and their antimicrobial activity against some plant pathogenic bacteria and fungi. Life Sci J 10:2470–2475

    Google Scholar 

  • Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Equip 29:221–236

    Article  CAS  Google Scholar 

  • Ali SM, Yousef NM, Nafady NA (2015) Application of biosynthesized silver nanoparticles for the control of land snail Eobania vermiculata and some plant pathogenic fungi. J Nanomater; Article ID 218904.

    Google Scholar 

  • Alvarez-Puebla R, Dos Santos JD, Aroca R (2004) Surface-enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2-naphthalenethiols. Analyst 129:1251–1256

    Article  CAS  PubMed  Google Scholar 

  • Ataee R, Derakhshanpour J, Mehrabi Tavana A, Eydi A (2011) Antibacterial effect of calcium carbonate nanoparticles on Agrobacterium tumefaciens. J Mil Med 13:65–70

    Google Scholar 

  • Baek Y-W, An Y-J (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  CAS  PubMed  Google Scholar 

  • Bahrami-Teimoori B, Nikparast Y, Hojatianfar M, Akhlaghi M, Ghorbani R, Pourianfar HR (2017) Characterisation and antifungal activity of silver nanoparticles biologically synthesised by Amaranthus retroflexus leaf extract. J Exp Nanosci 12:129–139

    Article  CAS  Google Scholar 

  • Banik S, Pérez-de-Luque A (2017) In vitro effects of copper nanoparticles on plant pathogens, beneficial microbes and crop plants. Span J Agric Res 15:e1005

    Article  Google Scholar 

  • Banik S, Sharma P (2011) Plant pathology in the era of nanotechnology. Indian Phytopathol 64:120–127

    Google Scholar 

  • Bhainsa KC, D’souza S (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47:160–164

    Article  CAS  PubMed  Google Scholar 

  • Bronstein LM, Chernyshov DM, Volkov IO, Ezernitskaya MG, Valetsky PM, Matveeva VG et al (2000) Structure and properties of bimetallic colloids formed in polystyrene-block-poly-4-vinylpyridine micelles: catalytic behavior in selective hydrogenation of dehydrolinalool. J Catal 196:302–314

    Article  CAS  Google Scholar 

  • Chellaram C, Murugaboopathi G, John A, Sivakumar R, Ganesan S, Krithika S et al (2014) Significance of nanotechnology in food industry. APCBEE Procedia 8:109–113

    Article  CAS  Google Scholar 

  • Degrassi G, Bertani I, Devescovi G, Fabrizi A, Gatti A, Venturi V (2012) Response of plant-bacteria interaction models to nanoparticles. EQA-Int J Environment Qual 8:39–50

    Google Scholar 

  • Dhas SP, John SP, Mukherjee A, Chandrasekaran N (2014) Autocatalytic growth of biofunctionalized antibacterial silver nanoparticles. Biotechnol Appl Biochem 61:322–332

    CAS  PubMed  Google Scholar 

  • Dimkpa CO, Zeng J, McLean JE, Britt DW, Zhan J, Anderson AJ (2012) Production of indole-3-acetic acid via the indole-3-acetamide pathway in the plant-beneficial bacterium Pseudomonas chlororaphis O6 is inhibited by ZnO nanoparticles but enhanced by CuO nanoparticles. Appl Environ Microbiol 78:1404–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Dubey SP, Lahtinen M, Sillanpää M (2010) Tansy fruit mediated greener synthesis of silver and gold nanoparticles. Process Biochem 45:1065–1071

    Article  CAS  Google Scholar 

  • Dwivedi S, Wahab R, Khan F, Mishra YK, Musarrat J, Al-Khedhairy AA (2014) Reactive oxygen species mediated bacterial biofilm inhibition via zinc oxide nanoparticles and their statistical determination. PLoS One 9:e111289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH et al (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Article  Google Scholar 

  • FAO F (2012) Agriculture Organization of the United Nations, FAOSTAT database

    Google Scholar 

  • Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson AJ (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  PubMed  Google Scholar 

  • Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28

    Article  CAS  Google Scholar 

  • Ghadamgahi F, Mehraban Sang Atash M, Shahidi Bonjar G (2014) Comparison of inhibitory effects of silver and zinc oxide nanoparticles on the growth of plant pathogenic bacteria. Int J Adv Biol Biomed Res 2:1163–1167

    Google Scholar 

  • Ghorbanpour M, Manika K, Varma A (2017a) Nanoscience and plant–soil systems. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2017b) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control 117:147–157

    Article  Google Scholar 

  • Gibbs JB (2000) Mechanism-based target identification and drug discovery in cancer research. Science 287:1969–1973

    Article  CAS  PubMed  Google Scholar 

  • Goffeau A (2008) Drug resistance: the fight against fungi. Nature 452:541–542

    Article  CAS  PubMed  Google Scholar 

  • Gogos A, Knauer K, Bucheli TD (2012) Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. J Agric Food Chem 60:9781–9792

    Article  CAS  PubMed  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W et al (2007) Preparation and antibacterial activity of Fe3O4@ Ag nanoparticles. Nanotechnology 18:285604

    Article  CAS  Google Scholar 

  • Goodsell DS (2004) Bionanotechnology: lessons from nature. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  • Goudie AS, Cuff DJ (2001) Encyclopedia of global change: environmental change and human society, vol 1. Oxford University Press, Oxford

    Google Scholar 

  • Gu H, Ho P, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    Article  CAS  Google Scholar 

  • Gunawan C, Teoh WY, Marquis CP, Amal R (2011) Cytotoxic origin of copper (II) oxide nanoparticles: comparative studies with micron-sized particles, leachate, and metal salts. ACS Nano 5:7214–7225

    Article  CAS  PubMed  Google Scholar 

  • Harris AT, Bali R (2008) On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10:691–695

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011a) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166:207–215

    Article  CAS  PubMed  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N, Lin X (2011b) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417

    Article  CAS  Google Scholar 

  • Hu C-MJ, Aryal S, Zhang L (2010a) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1:323–334

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Peng C, Luo W, Lv M, Li X, Li D et al (2010b) Graphene-based antibacterial paper. ACS Nano 4:4317–4323

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400

    Article  Google Scholar 

  • Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang BI et al (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    Article  CAS  PubMed  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    Article  CAS  Google Scholar 

  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388–1401

    Article  CAS  PubMed  Google Scholar 

  • Jo Y-K, Kim BH, Jung G (2009) Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93:1037–1043

    Article  CAS  PubMed  Google Scholar 

  • Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    Article  CAS  PubMed  Google Scholar 

  • Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23:8670–8673

    Article  CAS  PubMed  Google Scholar 

  • Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122

    Article  CAS  PubMed  Google Scholar 

  • Kasprowicz MJ, Kozioł M, Gorczyca A (2010) The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56:247–253

    Article  CAS  PubMed  Google Scholar 

  • Kaviya S, Santhanalakshmi J, Viswanathan B, Muthumary J, Srinivasan K (2011) Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 79:594–598

    Article  CAS  PubMed  Google Scholar 

  • Khabat V, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei. Insciences J 1:65–79

    Google Scholar 

  • Khan MR, Rizvi TF (2014) Nanotechnology: scope and application in plant disease management. Plant Pathol J 13:214–231

    Article  CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Kim K-J, Sung WS, Moon S-K, Choi J-S, Kim JG, Lee DG (2008) Antifungal effect of silver nanoparticles on dermatophytes. J Microbiol Biotechnol 18:1482–1484

    CAS  PubMed  Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40:53–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SW, Kim KS, Lamsal K, Kim Y-J, Kim SB, Jung M et al (2009) An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. J Microbiol Biotechnol 19:760–764

    PubMed  Google Scholar 

  • Knell M (2010) Nanotechnology and the sixth technological revolution. In: Nanotechnology and the challenges of equity, equality and development. Springer, Dordrecht, pp 127–143

    Chapter  Google Scholar 

  • Köhler J, Abahmane L, Wagner J, Albert J, Mayer G (2008) Preparation of metal nanoparticles with varied composition for catalytical applications in microreactors. Chem Eng Sci 63:5048–5055

    Article  CAS  Google Scholar 

  • Kolekar T, Yadav H, Bandgar S, Deshmukh P (2011) Synthesis by sol–gel method and characterization of ZnO nanoparticles. Indian Streams Res J 1(1):1–4

    Google Scholar 

  • Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171

    Article  CAS  Google Scholar 

  • Li J, Sang H, Guo H, Popko JT, He L, White JC et al (2017) Antifungal mechanisms of ZnO and Ag nanoparticles to Sclerotinia homoeocarpa. Nanotechnology 28:155101

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Leung P, Yao L, Song Q, Newton E (2006) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    Article  CAS  PubMed  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Wei L, Hao L, Fang N, Chang MW, Xu R et al (2009) Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube. ACS Nano 3:3891–3902

    Article  CAS  PubMed  Google Scholar 

  • Lysakowska ME, Ciebiada-Adamiec A, Klimek L, Sienkiewicz M (2015) The activity of silver nanoparticles (Axonnite) on clinical and environmental strains of Acinetobacter spp. Burns 41:364–371

    Article  PubMed  Google Scholar 

  • Mahdizadeh V, Safaie N, Khelghatibana F (2015) Evaluation of antifungal activity of silver nanoparticles against some phytopathogenic fungi and Trichoderma harzianum. J Crop Protect 4:291–300

    Google Scholar 

  • Manjumeena R, Duraibabu D, Sudha J, Kalaichelvan P (2014) Biogenic nanosilver incorporated reverse osmosis membrane for antibacterial and antifungal activities against selected pathogenic strains: an enhanced eco-friendly water disinfection approach. J Environ Sci Health A 49:1125–1133

    Article  CAS  Google Scholar 

  • Manmode AS, Sakarkar DM, Mahajan NM (2009) Nanoparticles – tremendous therapeutic potential: a review. Int J Pharm Tech Res 1:1020–1027

    CAS  Google Scholar 

  • Min J-S, Kim K-S, Kim S-W, Jung J-H, Lamsal K, Kim S-B et al (2009) Effects of colloidal silver nanoparticles on sclerotium-forming phytopathogenic fungi. Plant Pathol J 25:376–380

    Article  CAS  Google Scholar 

  • Mohammad TG, El-Rahman AA (2015) Environmentally friendly synthesis of silver nanoparticles using Moringa oleifera (Lam) leaf extract and their antibacterial activity against some important pathogenic bacteria. Mycopath 13:1–6

    Google Scholar 

  • Mondal KK, Mani C (2012) Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62:889–893

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  PubMed  Google Scholar 

  • Naraginti S, Sivakumar A (2014) Eco-friendly synthesis of silver and gold nanoparticles with enhanced bactericidal activity and study of silver catalyzed reduction of 4-nitrophenol. Spectrochim Acta A Mol Biomol Spectrosc 128:357–362

    Article  CAS  PubMed  Google Scholar 

  • Parisi C, Vigani M, Rodríguez-Cerezo E (2015) Agricultural nanotechnologies: what are the current possibilities? Nano Today 10:124–127

    Article  CAS  Google Scholar 

  • Park H-J, Kim S-H, Kim H-J, Choi S-H (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Article  Google Scholar 

  • Patolsky F, Zheng G, Lieber CM (2006) Nanowire sensors for medicine and the life sciences. Nanomedicine 1:51–65

    Article  CAS  PubMed  Google Scholar 

  • Perelaer J, De Laat AW, Hendriks CE, Schubert US (2008) Inkjet-printed silver tracks: low temperature curing and thermal stability investigation. J Mater Chem 18:3209–3215

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A, Rubiales D (2009) Nanotechnology for parasitic plant control. Pest Manag Sci 65:540–545

    Article  CAS  PubMed  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Pulit J, Banach M, Szczygłowska R, Bryk M (2013) Nanosilver against fungi. Silver nanoparticles as an effective biocidal factor. Acta Biochim Pol 60:795–798

    PubMed  Google Scholar 

  • Raghupathi KR, Koodali RT, Manna AC (2011) Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27:4020–4028

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  PubMed  Google Scholar 

  • Rao KJ, Paria S (2013) Use of sulfur nanoparticles as a green pesticide on Fusarium solani and Venturia inaequalis phytopathogens. RSC Adv 3:10471–10478

    Article  CAS  Google Scholar 

  • Salata OV (2004) Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2:3

    Article  Google Scholar 

  • Scrinis G, Lyons K (2007) The emerging nano-corporate paradigm: nanotechnology and the transformation of nature, food and agri-food systems. Int J Sociol Food Agric 15:22–44

    Google Scholar 

  • Shah M, Ahmad T (2010) Principles of nanoscience and nanotechnology. Alpha Science International, Oxford

    Google Scholar 

  • Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H et al (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugam C, Gunasekaran D, Duraisamy N, Nagappan R, Krishnan K (2015) Bioactive bile salt-capped silver nanoparticles activity against destructive plant pathogenic fungi through in vitro system. RSC Adv 5:71174–71182

    Article  CAS  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  PubMed  Google Scholar 

  • Tamayo L, Zapata P, Vejar N, Azócar M, Gulppi M, Zhou X et al (2014) Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng C 40:24–31

    Article  CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of ‘nano-technology’. In Proc Intl Conf. Prod Eng Tokyo. Part II, Japan Society of Precision Engineering

    Google Scholar 

  • Tomas J (2003) Mechanics of nanoparticle adhesion – a continuum approach. Particles Surfaces 8:183–229

    Google Scholar 

  • Waddington SR, Li X, Dixon J, Hyman G, De Vicente MC (2010) Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Security 2:27–48

    Article  Google Scholar 

  • Wang C, Huang X, Deng W, Chang C, Hang R, Tang B (2014) A nano-silver composite based on the ion-exchange response for the intelligent antibacterial applications. Mater Sci Eng C 41:134–141

    Article  CAS  Google Scholar 

  • Wani A, Shah M (2012) A unique and profound effect of MgO and ZnO nanoparticles on some plant pathogenic fungi. J Appl Pharmaceut Sci 2:40–44

    Google Scholar 

  • Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H (2012) Nanoparticles as drug delivery systems. Pharmacol Rep 64:1020–1037

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni. Appl Environ Microbiol 77:2325–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wang J, Xiu Z, Alvarez PJ (2013) Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria. Environ Toxicol Chem 32:1488–1494

    CAS  PubMed  Google Scholar 

  • Zak AK, Majid WA, Abrishami ME, Yousefi R (2011) X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci 13:251–256

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrnaz Hatami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maroufpoor, N., Alizadeh, M., Hamishehkar, H., Lajayer, B.A., Hatami, M. (2019). Engineered Nanoparticle-Based Approaches to the Protection of Plants Against Pathogenic Microorganisms. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13296-5_14

Download citation

Publish with us

Policies and ethics