Skip to main content

GIT Stability, K-Stability and the Moduli Space of Fano Varieties

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 31))

Abstract

This is a slightly extended version of the lecture notes of a mini-course in the workshop of Moduli of K-stable Varieties given by the author, in which the main construction of the proper moduli space of \(\mathbb {Q}\)-Gorenstein smoothable K-semistable Fano varieties in Li et al. (On proper moduli space of smoothable Kähler-Einstein Fano varieties, ArXiv:1411.0761 v3, 2014) is outlined.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We assume \(\mathcal {O}_Z(1)\) being very ample only to simplify our notation.

  2. 2.

    From now on, we will abuse our notation by regarding the moment map μ K to be \(\mathfrak {k}\) valued.

  3. 3.

    Note, r will be chosen sufficiently divisible (whose existence is guaranteed by [33, Lemma 8.3]) so that all \(\mathbb {Q}\)-Gorentstein smoothable K-semistable Fano varieties are embedded in \(\mathbb {P}^N\) (cf. Definition of Z in (17) and Sect. 5).

  4. 4.

    To avoid lengthy context of technicality, here we include a slight modification of what is already included in the introduction section of [33].

  5. 5.

    which we know in the end that it also holds in the Zariski topology.

  6. 6.

    For a \(\mathbb {Q}\)-Fano variety X together with a \(\mathbb {Q}\)-Cartier divisor D ∈|− K X|, we define the K-semistable threshold for the log pair (X, D) as following:

    $$\displaystyle \begin{aligned} \mathrm{kst}(X, D):=\sup \left\{\beta \in (0,1] \left | \ \ (X, D) \mbox{ is}\ \beta\mbox{-K-semistable} \right. \right\}. \end{aligned} $$
    (21)

    In particular, it is positive by [33, Theorem 5.2].

  7. 7.

    Where [⋅]Aut(X) and [⋅]SL(N+1) denote the equivalent classes of the categorical quotients of U W and Z by Aut(X) and SL(N + 1) respectively.

References

  1. Alper, J., Fedorchuk, M., Smyth, D.I.: Second flip in the Hassett-Keel program: existence of good moduli spaces. Compos. Math. 153(8), 1584–1609 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alper, J.: Good moduli spaces for Artin stacks. Ann. Inst. Fourier (Grenoble) 63(6), 2349–2042 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities. J. Am. Math. Soc. 28(1), 183–197 (2015)

    MATH  Google Scholar 

  5. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2π. J. Am. Math. Soc. 28(1), 199–234 (2015)

    Google Scholar 

  6. Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds. III: Limits as cone angle approaches 2π and completion of the main proof. J. Am. Math. Soc. 28(1), 235–278 (2015)

    Google Scholar 

  7. Donaldson, S.K.: Scalar curvature and projective embeddings. I. J. Differ. Geom. 59(3), 479–522 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donaldson, S.K.: Discussion of the Kähler-Einstein problem (2009). http://www.imperial.ac.uk/skdona/KENOTES.PDF

  9. Donaldson, S.K.: Kähler Metrics with Cone Singularities Along a Divisor. Essays in Mathematics and Its Applications, pp. 49–79. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Dréezet, J.-M.: Luna’s Slice Theorem and Applications. Algebraic Group Actions and Quotients, pp. 39–89. Hindawi Publ. Corp. Cairo (2004)

    Google Scholar 

  11. Drezet, J.-M., Narasimhan, M.S.: Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques. Invent. Math. 97(1), 53–94 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donaldson, S., Sun, S.: Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. Acta Math. 213(1), 63–106 (2014). MR3261011

    Article  MathSciNet  MATH  Google Scholar 

  13. Fine, J., Ross, J.: A note on positivity of the CM line bundle. Int. Math. Res. Not., Art. ID 95875, 14pp (2006)

    Google Scholar 

  14. Fujiki, A., Schumacher, G.: The moduli space of extremal compact Kähler manifolds and generalized Weil-Petersson metrics. Publ. Res. Inst. Math. 26, 101–183 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fujita, K.: Optimal bounds for the volumes of Kähler-Einstein Fano manifolds, arXiv:1508.04578 (2015)

    Google Scholar 

  16. Gieseker, D.: Global moduli for surfaces of general type. Invent. Math. 43(3), 233–282 (1977). MR0498596

    Article  MathSciNet  MATH  Google Scholar 

  17. Hacon, C., McKernan, J., Xu, C.: ACC for log canonical thresholds. Ann. Math. (2) 180(2), 523–571 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kollár, J.: Rational curves on algebraic varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32. Springer, Berlin (1996)

    Google Scholar 

  19. Kollár, J.: Moduli of varieties of general type. In: Handbook of Moduli, vol. II. Advanced Lectures in Mathematics (ALM), 25, pp. 131–157. International Press, Somerville (2013)

    Google Scholar 

  20. Kollár, J.: Families of varieties of general type (2017). http://web.math.princeton.edu/kollar/book/modbook20170720-hyper.pdf

  21. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge Tracts in Mathematics, vol. 134. Cambridge University Press, Cambridge (1998). With the collaboration of C. H. Clemens and A. Corti; Translated from the 1998 Japanese original

    Google Scholar 

  22. Kollár, J., Miyaoka, Y., Mori, S.: Rational connectedness and boundedness of Fano manifolds. J. Differ. Geom. 36(3), 765–779 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Kollár, J., Shepherd-Barron, N.I.: Threefolds and deformations of surface singularities. Invent. Math. 91(2), 299–338 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, K.-L., Li, Z., Sturm, J., Wang, X.: Asymptotic Chow stability of toric Del Pezzo surfaces, arXiv:1711.10099 (2017)

    Google Scholar 

  25. Li, C.: Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds. J. Reine Angew. Math. 733, 55–85 (2017). MR3731324

    MathSciNet  MATH  Google Scholar 

  26. Li, C.: Minimizing normalized volumes of valuations. Math. Z. 289(1–2), 491–513 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, C.: K-semistability is equivariant volume minimization. Duke Math. J. 166(16), 3147–3218 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, J.: Algebraic geometric interpretation of Donaldson’s polynomial invariants. J. Differ. Geom. 37(2), 417–466 (1993). MR1205451

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, C., Liu, Y.: Kähler-Einstein metrics and volume minimization. Adv. Math. 341, 440–492 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Liu, Y.: The volume of singular Kähler-Einstein Fano varieties. Compos. Math. 154(6), 1131–1158 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu, Y., Xu C.: K-stability of cubic threefolds. Duke Math. J. arXiv:1706.01933 (Accepted)

    Google Scholar 

  32. Li, C., Sun, S.: Conical Kähler-Einstein metrics revisited. Commun. Math. Phys. 331(3), 927–973 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, C., Wang, X., Xu, C.: On proper moduli space of smoothable Kähler-Einstein Fano varieties, ArXiv:1411.0761 v3 (2014)

    Google Scholar 

  34. Li, C., Wang, X., Xu, C.: Quasi-projectivity of the moduli space of smooth Kähler-Einstein Fano manifolds. Ann. Sci. École Norm. Sup. (4) 51(3), 739–772 (2018)

    Google Scholar 

  35. Li, C., Xu, C.: Stability of Valuations and Kollár Components, arXiv:1604.05398 (2016)

    Google Scholar 

  36. Li, C., Xu, C.: Stability of Valuations: Higher Rational Rank, arXiv:1707.05561 (2017)

    Google Scholar 

  37. Mumford, D., Forgarty, J., Kirwan, F.: Geometric Invariant Theory. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 34. Springer, Berlin (1994)

    Google Scholar 

  38. Matsushima, Y.: Espaces homogènes de Stein des groupes de Lie complexes. Nagoya Math. J 16, 205–218 (1960) (French). MR0109854

    Article  MathSciNet  MATH  Google Scholar 

  39. Odaka, Y., Spotti, C., Sun, S.: Compact moduli spaces of Del Pezzo surfaces and Kähler-Einstein metrics. J. Differ. Geom. 102(1), 127–172 (2016)

    Article  MATH  Google Scholar 

  40. Paul, S., Tian, G.: CM stability and the generalized Futaki invariant I, arXiv:math/0605278 (2006)

    Google Scholar 

  41. Paul, S., Tian, G.: CM stability and the generalized Futaki invariant II. Astérisque 328, 339–354 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Phong, D.H., Ross, J., Sturm, J.: Deligne pairing and the Knudsen-Mumford expansion. J. Differ. Geom. 78(3), 475–496 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Shah, J.: Stability of local rings of dimension 2. Proc. Nat. Acad. Sci. U.S.A. 75(9), 4085–4086 (1978). MR507380

    Article  MathSciNet  MATH  Google Scholar 

  44. Sjamaar, R.: Holomorphic Slices, Symplectic Reduction and Multiplicities of Representations. Ann. Math. (2) 131(1), 87–129 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sun, S., Spotti, C.: Explicit Gromov-Hausdorff compactifications of moduli spaces of Khler-Einstein Fano manifolds, arXiv:1705.00377 (2017)

    Google Scholar 

  46. Spotti, C., Sun, S., Yao, C.: Existence and deformations of Khler-Einstein metrics on smoothable Q-Fano varieties. Duke Math. J. 165(16), 3043–3083 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–39 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tian, G.: K-stability and Kähler-Einstein metrics. Commun. Pure Appl. Math. 68(7), 1085–1156 (2015)

    Article  MATH  Google Scholar 

  49. Wang, X., Xu, C.: Nonexistence of asymptotic GIT compactification. Duke Math. J. 163, 2217–2241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Wang, X.: Height and GIT weight. Math. Res. Lett. 19(4), 909–926 (2012). MR3008424

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This note is an extended version of the lectures given by the author at the INDAM workshop on Moduli of K-stable Varieties at Rome on 10-14 July 2017. It is based on my joint work with Chi Li and Chenyang Xu in [33, 34]. I want to express my gratitude to my coauthors for their collaboration and sincere comments on this note, and I am responsible for all the mistakes and inaccuracies if there is still any. The author also wants to express his deep gratitude to the anonymous referee, whose meticulous proofreading of the draft tremendously improve the exposition. The author is partially supported by a Collaboration Grants for Mathematicians from the Simons Foundation:281299 and NSF:DMS-1609335. Last but not least, the author wants to thank the organizers of the workshop in Rome for creating such an exciting event.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, X. (2019). GIT Stability, K-Stability and the Moduli Space of Fano Varieties. In: Codogni, G., Dervan, R., Viviani, F. (eds) Moduli of K-stable Varieties. Springer INdAM Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-13158-6_8

Download citation

Publish with us

Policies and ethics