Abstract
Modern cyber-physical systems (CPS) are often developed in a model-based development (MBD) paradigm. The MBD paradigm involves the construction of different kinds of models: (1) a plant model that encapsulates the physical components of the system (e.g., mechanical, electrical, chemical components) using representations based on differential and algebraic equations, (2) a controller model that encapsulates the embedded software components of the system, and (3) an environment model that encapsulates physical assumptions on the external environment of the CPS application. In order to reason about the correctness of CPS applications, we typically pose the following question: For all possible environment scenarios, does the closed-loop system consisting of the plant and the controller exhibit the desired behavior? Typically, the desired behavior is expressed in terms of properties that specify unsafe behaviors of the closed-loop system. Often, such behaviors are expressed using variants of real-time temporal logics. In this chapter, we will examine formal methods based on bounded-time reachability analysis, simulation-guided reachability analysis, deductive techniques based on safety invariants, and formal, requirement-driven testing techniques. We will review key results in the literature, and discuss the scalability and applicability of such systems to various academic and industrial contexts. We conclude this chapter by discussing the challenge to formal verification and testing techniques posed by newer CPS applications that use AI-based software components.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Allowing stochasticity in the plant or environment model necessitates treating the closed-loop CPS model as a stochastic dynamical system. The techniques for verification and testing of such systems are quite different. As we wish to focus on techniques that are closer to industrial use of MBD for CPS applications, we refer the reader to [36, 71] for excellent surveys.
- 2.
For a set X, let \(\mathcal {P}(X)\) denote its power set.
References
Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivancic, F., & Gupta, A. (2013). Probabilistic temporal logic falsification of cyber-physical systems. ACM Transactions on Embedded Computing Systems, 12, 95.
Abbas, H., Hoxha, B., Fainekos, G., & Ueda, K. (2014). Robustness-guided temporal logic testing and verification for stochastic cyber-physical systems. In 2014 IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER) (pp. 1–6). Piscataway: IEEE.
Abbas, H., O’Kelly, M., Rodionova, A., & Mangharam, R. (2017). Safe at any speed: A simulation-based test harness for autonomous vehicles. In 7th Workshop on Design, Modeling and Evaluation of Cyber Physical Systems (CyPhy’17).
Abbas, H., Rodionova, A., Bartocci, E., Smolka, S. A., & Grosu, R. (2017). Quantitative regular expressions for arrhythmia detection algorithms. In Proceedings of the International Conference on Computational Methods in Systems Biology (pp. 23–39). Berlin: Springer.
Adimoolam, A., Dang, T., Donzé, A., Kapinski, J., & Jin, X. (2017). Classification and coverage-based falsification for embedded control systems. In International Conference on Computer Aided Verification (pp. 483–503). Berlin: Springer.
Akazaki, T., Liu, S., Yamagata, Y., Duan, Y., & Hao, J. (2018). Falsification of cyber-physical systems using deep reinforcement learning. arXiv preprint arXiv:1805.00200.
Althoff, M. (2015). An introduction to CORA 2015. In Proceedings of the Workshop on Applied Verification for Continuous and Hybrid Systems (pp. 120–151).
Althoff, M., & Grebenyuk, D. (2016). Implementation of interval arithmetic in CORA 2016. In Proceedings of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems (pp. 91–105).
Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P. H., Nicollin, X., et al. (1995). The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1), 3–34.
Alur, R., Courcoubetis, C., Henzinger, T. A., & Ho, P. H. (1993). Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In Workshop on International Hybrid Systems (pp. 209–229). Berlin: Springer.
Alur, R., Dang, T., & Ivančić, F. (2003). Counter-example guided predicate abstraction of hybrid systems. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science (Vol. 2619, pp. 208–223). Berlin: Springer
Alur, R., & Dill, D.L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2), 183–235.
Alur, R., Fisman, D., & Raghothaman, M. (2016). Regular programming for quantitative properties of data streams. In Proceedings of the European Symposium on Programming Languages and Systems (pp. 15–40). Berlin: Springer.
Alur, R., & Henzinger, T. A. (1989). A really temporal logic. In Proceedings of the Symposium on Foundations of Computer Science (pp. 164–169).
Alur, R., Henzinger, T. A., Lafferriere, G., & Pappas, G.J. (2000). Discrete abstractions of hybrid systems. Proceedings of the IEEE, 88(7), 971–984.
Alur, R., Mamouras, K., & Ulus, D. (2017). Derivatives of quantitative regular expressions. In Models, algorithms, logics and tools (pp. 75–95). Cham: Springer.
Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014). Control barrier function based quadratic programs with application to adaptive cruise control. In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC) (pp. 6271–6278). Piscataway: IEEE.
Annapureddy, Y. S. R., & Fainekos, G. E. (2010). Ant colonies for temporal logic falsification of hybrid systems. In Proceedings of the 36th Annual Conference of IEEE Industrial Electronics (pp. 91–96). Piscataway: IEEE.
Annpureddy, Y., Liu, C., Fainekos, G. E., & Sankaranarayanan, S. (2011). S-TaLiRo: A tool for temporal logic falsification for hybrid systems. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems (pp. 254–257). Berlin: Springer.
Aréchiga, N., & Krogh, B. (2014). Using verified control envelopes for safe controller design. In 2014 American Control Conference (ACC) (pp. 2918–2923). Piscataway: IEEE.
Asarin, E., Caspi, P., & Maler, O. (2002). Timed regular expressions. Journal of the ACM, 49(2), 172–206.
Asarin, E., Dang, T., & Girard, A. (2007). Hybridization methods for the analysis of nonlinear systems. Acta Informatica, 43(7), 451–476.
Asarin, E., Maler, O., & Pnueli, A. (1995). Reachability analysis of dynamical systems having piecewise-constant derivatives. Theoretical Computer Science, 138, 35–65.
Baier, C., & Katoen, J. P. (2008). Principles of model checking. Cambridge, MA: MIT Press.
Bak, S., & Duggirala, P. S. (2017). HyLAA: A tool for computing simulation-equivalent reachability for linear systems. In Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control (pp. 173–178). New York: ACM.
Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A., & Criminisi, A. (2016). Measuring neural net robustness with constraints. In Advances in Neural Information Processing Systems (pp. 2613–2621).
Berz, M. (1999). Modern map methods in particle beam physics. Advances in Imaging and Electron Physics (Vol. 108). London: Academic.
Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., et al. (2016) End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316.
Bonakdarpour, B., & Finkbeiner, B. (2016). Runtime verification for HyperLTL. In International Conference on Runtime Verification (pp. 41–45). Cham: Springer.
Bonakdarpour, B., Sanchez, C., & Schneider, G. (2018). Monitoring hyperproperties by combining static analysis and runtime verification. In International Symposium on Leveraging Applications of Formal Methods (pp. 8–27). Berlin: Springer.
Bournez, O., Maler, O., & Pnueli, A. (1999). Orthogonal polyhedra: Representation and computation. In Hybrid systems: Computation and control. Lecture Notes in Computer Science (Vol. 1569, pp. 46–60). Berlin: Springer.
Box, G. E. P. (1979). Robustness in the strategy of scientific model building. In Robustness in Statistics (pp. 201–236). London: Academic.
Brockett, R. (1993). Hybrid models for motion control systems. In Essays on control: Perspectives in the theory and its applications (pp. 29 –53). Boston: Birkhäuser.
Cameron, F., Fainekos, G., Maahs, D. M., & Sankaranarayanan, S. (2015). Towards a verified artificial pancreas: Challenges and solutions for runtime verification. In Proceedings of Runtime Verification (RV’15). Lecture Notes in Computer Science (Vol. 9333, pp. 3–17). Cham: Springer.
Cameron, F., Wilson, D. M., Buckingham, B. A., Arzumanyan, H., Clinton, P., Chase, H. P., et al. (2012). Inpatient studies of a Kalman-filter-based predictive pump shutoff algorithm. Journal of Diabetes Science and Technology, 6(5), 1142–1147.
Cassandras, C. G., & Lygeros, J. (2006). Stochastic hybrid systems. Boca Raton: CRC Press.
Chaochen, Z., Hoare, C. A. R., & Ravn, A. P. (1991). A calculus of durations. Information Processing Letters, 40(5), 269–276.
Chee, F., & Fernando, T. (2007). Closed-loop control of blood glucose. Berlin: Springer.
Chen, S., O’Kelly, M., Weimer, J., Sokolsky, O., & Lee, I. (2015). An intraoperative glucose control benchmark for formal verification. In 5th IFAC conference on Analysis and Design of Hybrid Systems (ADHS) (2015)
Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2012). Taylor model flowpipe construction for non-linear hybrid systems. In Proceedings of the 2012 IEEE 33rd Real-Time Systems Symposium (RTSS’12) (pp. 183–192). Piscataway: IEEE.
Chen, X., Ábrahám, E., & Sankaranarayanan, S. (2013). Flow*: An analyzer for non-linear hybrid systems. In International Conference on Computer Aided Verification. Lecture Notes in Computer Science (Vol. 8044, pp. 258–263). Berlin: Springer.
Chen, X., Mover, S., & Sankaranarayanan, S. (2017). Compositional relational abstraction for nonlinear systems. ACM Transactions on Embedded Computing Systems, 16(5s), 187.
Chen, X., & Sankaranarayanan, S. (2016). Decomposed reachability analysis for nonlinear systems. In 2016 IEEE Real-Time Systems Symposium (RTSS) (pp. 13–24). Piscataway: IEEE.
Chonev, V., Ouaknine, J., & Worrell, J. (2016). On the Skolem problem for continuous linear dynamical systems. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016). Leibniz International Proceedings in Informatics (Vol. 55, pp. 100:1–100:13). Wadern: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
Chutinan, A., & Krogh, B. (1998). Computing polyhedral approximations to flow pipes for dynamic systems. In Proceedings of the 37th IEEE Conference on Decision and Control. Piscataway: IEEE.
Chutinan, A., & Krogh, B. H. (2003). Computational techniques for hybrid system verification. IEEE Transactions on Automatic Control, 48(1), 64–75. https://doi.org/10.1109/TAC.2002.806655
Clarkson, M. R., & Schneider, F. B. (2010). Hyperproperties. Journal of Computer Security, 18(6), 1157–1210.
Cobelli, C., Man, C. D., Sparacino, G., Magni, L., Nicolao, G. D., & Kovatchev, B. P. (2009). Diabetes: Models, signals and control (methodological review). IEEE Reviews in Biomedical Engineering, 2, 54–95.
Dang, T., & Maler, O. (1998). Reachability via face lifting. In Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 1386, pp. 96–109). Berlin: Springer
Dang, T., Maler, O., & Testylier, R. (2010). Accurate hybridization of nonlinear systems. In Hybrid Systems: Computation and Control (HSCC ’10) (pp. 11–20). New York: ACM.
Deshmukh, J., Horvat, M., Jin, X., Majumdar, R., & Prabhu, V. S. (2017). Testing cyber-physical systems through Bayesian optimization. ACM Transactions on Embedded Computing Systems, 16(5s), 170.
Deshmukh, J., Jin, X., Kapinski, J., & Maler, O. (2015). Stochastic local earch for falsification of hybrid ystems. In International Symposium on Automated Technology for Verification and Analysis (pp. 500–517). Berlin: Springer.
Dimitrova, R., Finkbeiner, B., Kovács, M., Rabe, M. N., & Seidl, H. (2012). Model checking information flow in reactive systems. In International Workshop on Verification, Model Checking, and Abstract Interpretation (pp. 169–185). Berlin: Springer.
Dokhanchi, A., Zutshi, A., Srinivas, R. T., Sankaranarayanan, S., & Fainekos, G. E. (2015). Requirements driven falsification with coverage metrics. In 2015 International Conference on Embedded Software (EMSOFT’15) (pp. 31–40). Piscataway: IEEE.
Donzé, A. (2010). Breach, a toolbox for verification and parameter synthesis of hybrid systems. In International Conference on Computer Aided Verification (pp. 167–170). Berlin: Springer.
Donzé, A., Ferrère, T., & Maler, O. (2013). Efficient robust monitoring for STL. In Computer Aided Verification (pp. 264–279). Berlin: Springer.
Donzé, A., & Maler, O. (2007). Systematic simulation using sensitivity analysis. In International Workshop on Hybrid Systems: Computation and Control (pp. 174–189). Berlin: Springer.
Donzé, A., & Maler, O. (2010). Robust satisfaction of temporal logic over real-valued signals. In Formal Modeling and Analysis of Timed Systems (pp. 92–106). Berlin: Springer.
Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Deshmukh, J., & Jin, X. (2015). Efficient guiding strategies for testing of temporal properties of hybrid systems. In NASA Formal Methods Symposium (pp. 127–142). Berlin: Springer.
Dreossi, T., Donzé, A., & Seshia, S. A. (2017). Compositional falsification of cyber-physical systems with machine learning components. In NASA Formal Methods. Lecture Notes in Computer Science (Vol. 10227). Berlin: Springer.
Dreossi, T., Ghosh, S., Sangiovanni-Vincentelli, A., & Seshia, S.A. (2017). Systematic testing of convolutional neural networks for autonomous driving. In Reliable Machine Learning in the Wild (RMLW) Workshop, Cf. https://people.eecs.berkeley.edu/~tommasodreossi/papers/rmlw2017.pdf
Duggirala, P. S., Fan, C., Mitra, S., & Viswanathan, M. (2015). Meeting a powertrain verification challenge. In Proceedings of the 27th International Conference on Computer Aided Verification. Part I (pp. 536–543). Cham: Springer.
Duggirala, P. S., Potok, M., Mitra, S., & Viswanathan, M. (2015). C2E2: A tool for verifying annotated hybrid systems. In Proceedings of the 18th International Conference on Hybrid Systems: Computation and Control (HSCC’15) (pp. 307–308). New York: ACM.
Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Learning and verification of feedback control systems using feedforward neural networks. IFAC-PapersOnLine, 51(16), 151–156.
Dutta, S., Jha, S., Sankaranarayanan, S., & Tiwari, A. (2018). Output range analysis for deep feedforward neural networks. In Proceedings of NASA Formal Methods Symposium (NFM). Lecture Notes in Computer Science (Vol. 10811, pp. 121–138). Berlin: Springer.
Dutta, S., Kushner, T., & Sankaranarayanan, S. (2018). Robust data-driven control of artificial pancreas systems using neural networks. In M. Češka, & D. Šafránek (Eds.), Computational methods in systems biology (pp. 183–202). Cham: Springer.
Ehlers, R. (2017). Formal verification of piece-wise linear feed-forward neural networks. In International Symposium on Automated Technology for Verification and Analysis. Lecture Notes in Computer Science (Vol. 10482, pp. 269–286). Berlin: Springer.
Fainekos, G. E., & Pappas, G. J. (2009). Robustness of temporal logic specifications for continuous-time signals. Theoretical Computer Science, 410(42), 4262–4291.
Fan, C., Kapinski, J., Jin, X., & Mitra, S. (2018). Simulation-driven reachability using matrix measures. ACM Transactions on Embedded Computing Systems, 17(1), 21:1–21:28.
Finkbeiner, B., Rabe, M. N., & Sánchez, C. (2015). Algorithms for model checking HyperLTL and HyperCTL*. In International Conference on Computer Aided Verification (pp. 30–48). Berlin: Springer.
Forejt, V., Kwiatkowska, M., Norman, G., & Parker, D. (2011). Automated verification techniques for probabilistic systems. In International School on Formal Methods for the Design of Computer, Communication and Software Systems (pp. 53–113). Berlin: Springer.
Fränzle, M., Herde, C., Ratschan, S., Schubert, T., & Teige, T. (2007). Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation, 1, 209–236.
Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., et al. (2011). SpaceEx: Scalable verification of hybrid systems. In International Conference on Computer Aided Verification (CAV’11). Lecture Notes in Computer Science (Vol. 6806, pp. 379–395). Berlin: Springer.
Fulton, N., Mitsch, S., Quesel, J.D., Völp, M., & Platzer, A. (2015). KeYmaera X: An axiomatic tactical theorem prover for hybrid systems. In Proceedings of International Conference on Automated Deduction (Vol. 9195, pp. 527–538). Cham: Springer. https://doi.org/10.1007/978-3-319-21401-6_36
Gadkari, A., Yeolekar, A., Suresh, J., Ramesh, S., Mohalik, S., & Shashidhar, K. (2008). Automotgen: Automatic model oriented test generator for embedded control systems. In A. Gupta & S. Malik (Eds.), Computer aided verification. Lecture Notes in Computer Science (Vol. 5123, pp. 204–208). Berlin: Springer.
Gao, S., Kong, S., & Clarke, E. M. (2013). dReal: An SMT solver for nonlinear theories over the reals. In International Conference on Automated Deduction (CADE’13). Lecture Notes in Computer Science (Vol. 7898, pp. 208–214). Berlin: Springer.
Geiger, A., Lenz, P., & Urtasun, R. (2012) Are we ready for autonomous driving? The Kitti vision benchmark suite. In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 3354–3361). Piscataway: IEEE.
Girard, A. (2005). Reachability of uncertain linear systems using zonotopes. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 3414, pp. 291–305). Berlin: Springer.
Girard, A., & Pappas, G. J. (2005). Approximate bisimulations for nonlinear dynamical systems. In Proceedings of the 44th IEEE Conference on Decision and Control (pp. 684–689). Piscataway: IEEE.
Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press. http://www.deeplearningbook.org
Goubault, E., Jourdan, J. H., Putot, S., & Sankaranarayanan, S. (2014). Finding non-polynomial positive invariants and lyapunov functions for polynomial systems through darboux polynomials. In Proceedings of the American Control Conference (ACC) (pp. 3571–3578). New York: IEEE Press.
Hainry, E. (2008). Reachability in linear dynamical systems. In Logic and theory of algorithms (pp. 241–250). Berlin: Springer.
Henzinger, T. A. (1996). The theory of hybrid automata. In Proceedings of the Logic in Computer Science (pp. 278–292). Piscataway: IEEE.
Henzinger, T. A., Kopke, P. W., Puri, A., & Varaiya, P. (1998). What’s decidable about hybrid automata? Journal of Computer and System Sciences, 57(1), 94–124.
Herde, C., Eggers, A., Franzle M., & Teige, T. (2008). Analysis of hybrid systems using HySAT. In Third International Conference on Systems, 2008 (pp. 13–18). Piscataway: IEEE.
Hovorka, R. (2005). Continuous glucose monitoring and closed-loop systems. Diabetic Medicine, 23(1), 1–12.
Huang, X., Kwiatkowska, M., Wang, S., & Wu, M. (2017). Safety verification of deep neural networks. In Proceedings of the Computer Aided Verification (pp. 3–29). Cham: Springer.
Jiang, Z., Pajic, M., Moarref, S., Alur, R., & Mangharam, R. (2012). Modeling and verification of a dual chamber implantable pacemaker. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS). Lecture Notes in Computer Science (Vol. 7214, pp. 188–203). Berlin: Springer.
Junghanns, A., Mauss, J., & Tatar, M. (2008). Tatar: Testweaver—a tool for simulation-based test of mechatronic designs. In 6th International Modelica Conference, Bielefeld, March 3. Citeseer
Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., & Aréchiga, N. (2014). Simulation-guided lyapunov analysis for hybrid dynamical systems. In Proceedings of the 17th International Conference on Hybrid Systems: Computation and Control (pp. 133–142 ). New York: ACM.
Kapinski, J., Krogh, B. H., Maler, O., & Stursberg, O. (2003). On systematic simulation of open continuous systems. In International Workshop on Hybrid Systems: Computation and Control (pp. 283–297). Berlin: Springer.
Kato, K., Ishikawa, F., & Honiden, S. (2018). Falsification of cyber-physical systems with reinforcement learning. In 2018 IEEE Workshop on Monitoring and Testing of Cyber-Physical Systems (MT-CPS) (pp. 5–6). Piscataway: IEEE.
Katz, G., Barrett, C., Dill, D., Julian, K., & Kochenderfer, M. (2017). Reluplex: An efficient smt solver for verifying deep neural networks. In International Conference on Computer Aided Verification (pp. 97–117). Berlin: Springer.
Koymans, R. (1990). Specifying real-time properties with metric temporal logic. Real-Time System, 2(4), 255–299.
Kurzhanski, A. B., & Varaiya, P. (2000). Ellipsoidal techniques for reachability analysis. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 1790, pp. 202–214). Berlin: Springer.
Kushner, T., Bortz, D., Maahs, D., & Sankaranarayanan, S. (2018). A data-driven approach to artificial pancreas verification and synthesis. In International Conference on Cyber-Physical Systems (ICCPS’18). New York: IEEE Press.
Labinaz, G., Bayoumi, M. M., & Rudie, K. (1997). A survey of modeling and control of hybrid systems. Annual Reviews in Control, 21, 79–92.
Lafferriere, G., Pappas, G. J., & Sastry, S. (2000). O-minimal hybrid systems. Mathematics of Control, Signals and Systems, 13(1), 1–21.
Leitner, F., & Leue, S. (2008). Simulink design verifier vs. SPIN a comparative case study. In Proceedings of the 13th International Workshop on Formal Methods for Industrial Critical Systems.
Levinson, J., Askeland, J., Becker, J., Dolson, J., Held, D., Kammel, S., et al. (2011). Towards fully autonomous driving: Systems and algorithms. In 2011 IEEE Intelligent Vehicles Symposium (IV) (pp. 163–168). Piscataway: IEEE.
Lomuscio, A., & Maganti, L. (2017). An approach to reachability analysis for feed-forward ReLU neural networks. http://arxiv.org/abs/1706.07351
Loos, S. M., Platzer, A., & Nistor, L. (2011). Adaptive cruise control: Hybrid, distributed, and now formally verified. In International Symposium on Formal Methods (pp. 42–56). Berlin: Springer.
Maahs, D. M., Calhoun, P., Buckingham, B. A., Chase, H. P., Hramiak, I., Lum, J., et al. (2014). A randomized trial of a home system to reduce nocturnal hypoglycemia in type 1 diabetes. Diabetes Care, 37(7), 1885–1891.
Magdici, S., & Althoff, M. (2017). Adaptive cruise control with safety guarantees for autonomous vehicles. IFAC-PapersOnLine, 50(1), 5774–5781.
Makino, K., & Berz, M. (2003). Taylor models and other validated functional inclusion methods. Journal of Pure and Applied Mathematics, 4(4), 379–456.
Maler, O., & Nickovic, D. (2004). Monitoring temporal properties of continuous signals. In Proceedings of Formal Modeling and Analysis of Timed Systems (pp. 152–166). Berlin: Springer.
Meiss, J. D. (2007). Differential dynamical systems. Philadelphia: SIAM.
Mitchell, I., & Tomlin, C. (2000). Level set methods for computation in hybrid systems. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 1790, pp. 310–323). Berlin: Springer.
Mover, S., Cimatti, A., Tiwari, A., & Tonetta, S. (2013). Time-aware relational abstractions for hybrid systems. In Proceedings of the Eleventh ACM International Conference on Embedded Software (EMSOFT ’13) (pp. 14:1–14:10). Piscataway: IEEE Press.
National Transportation Safety Board (NTSB) (2016). Collision between a car operating with automated vehicle control systems and a tractor-semitrailer truck. https://www.ntsb.gov/news/events/Documents/2017-HWY16FH018-BMG-abstract.pdf
Nghiem, T., Sankaranarayanan, S., Fainekos, G.E., Ivancic, F., Gupta, A., & Pappas, G.J. (2010). Monte-Carlo techniques for falsification of temporal properties of non-linear hybrid systems. In Proceedings of Hybrid Systems: Computation and Control (pp. 211–220). New York: ACM.
Nguyen, L. V., Kapinski, J., Jin, X., Deshmukh, J. V., & Johnson, T. T. (2017). Hyperproperties of real-valued signals. In Proceedings of the 15th ACM-IEEE International Conference on Formal Methods and Models for System Design (pp. 104–113). New York: ACM.
Nicolescu, G., & Mosterman, P. J. (2009). Model-based design for embedded systems (1st ed.). Boca Raton: CRC Press.
Nilsson, P., Hussien, O., Chen, Y., Balkan, A., Rungger, M., Ames, A., et al. (2014). Preliminary results on correct-by-construction control software synthesis for adaptive cruise control. In 2014 IEEE 53rd Annual Conference on Decision and Control (CDC) (pp. 816–823). Piscataway: IEEE.
Norris, J. (1998). Markov chains. Cambridge: Cambridge University Press.
Øksendal, B. K. (2000). Stochastic differential equations: An introduction. Berlin: Springer.
Pajic, M., Mangharam, R., Sokolsky, O., Arney, D., Goldman, J., & Lee, I. (2014). Model-driven safety analysis of closed-loop medical systems. IEEE Transactions on Industrial Informatics, 10(1), 3–16.
Papachristodoulou, A., & Prajna, S. (2005). Analysis of non-polynomial systems using the sum of squares decomposition. In Positive Polynomials in Control (pp. 23–43). Berlin: Springer.
Pei, Y., Entcheva, E., Grosu, R., & Smolka, S. (2005) Efficient modeling of excitable cells using hybrid automata. In Proceedings of the Computational Methods in Systems Biology (pp. 216–227).
Platzer, A. (2008). Differential dynamic logic for hybrid systems. Journal of Automated Reasoning, 41(2), 143–189.
Platzer, A. (2010). Logical analysis of hybrid systems: Proving theorems for complex dynamics. Heidelberg: Springer. https://doi.org/10.1007/978-3-642-14509-4
Platzer, A., & Clarke, E. M. (2008). Computing differential invariants of hybrid systems as fixedpoints. In A. Gupta & S. Malik (Eds.), Proceedings of computer aided verification. Lecture Notes in Computer Science (Vol. 5123, pp. 176–189). Berlin: Springer.
Pnueli, A. (1977). The temporal logic of programs. In Proceedings of Symposium on Foundations of Computer Science (pp. 46–57). Piscataway: IEEE.
Podelski, A., & Wagner, S. (2007). Region stability proofs for hybrid systems (pp. 320–335). Berlin: Springer.
Prabhakar, P., Duggirala, P. S., Mitra, S., & Viswanathan, M. (2013). Hybrid automata-based CEGAR for rectangular hybrid systems. In R. Giacobazzi, J. Berdine, I. Mastroeni (Eds.), Verification, model checking, and abstract interpretation (pp. 48–67). Berlin: Springer.
Prajna, S. (2005). Optimization-based methods for nonlinear and hybrid systems verification. Ph.D. thesis, California Institute of Technology, Caltech, Pasadena, CA, USA.
Prajna, S., & Jadbabaie, A. (2004). Safety verification of hybrid systems using barrier certificates. In Hybrid Systems: Computation and Control (pp. 477–492). Berlin: Springer.
Pulina, L., & Tacchella, A. (2012). Challenging smt solvers to verify neural networks. AI Communications, 25(2), 117–135.
Ratschan, S., & She, Z. (2005). Safety verification of hybrid systems by constraint propagation based abstraction refinement. In International Workshop on Hybrid Systems: Computation and Control. Lecture Notes in Computer Science (Vol. 3414, pp. 573–589). Berlin: Springer.
Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation-based abstraction refinement. ACM Transactions on Embedded Computing Systems, 6(1), 8. http://doi.acm.org/10.1145/1210268.1210276
Reactive Systems Inc. (2003). Model-based testing and validation of control software with reactis. http://www.reactive-systems.com/papers/bcsf.pdf
Roohi, N., Prabhakar, P., & Viswanathan, M. (2016). Hybridization based CEGAR for hybrid automata with affine dynamics. In M. Chechik, & J. F. Raskin (Eds.), Tools and algorithms for the construction and analysis of systems (pp. 752–769). Berlin: Springer.
Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., & Kwiatkowska, M. (2018). Global robustness evaluation of deep neural networks with provable guarantees for L0 norm. http://arxiv.org/abs/1804.05805
Sankaranarayanan, S., & Fainekos, G. E. (2012). Falsification of temporal properties of hybrid systems using the cross-entropy method. In ACM International Conference on Hybrid Systems: Computation and Control (pp. 125–134 ). New York: ACM.
Sankaranarayanan, S., Kumar, S. A., Cameron, F., Bequette, B. W., Fainekos, G., & Maahs, D. M. (2017). Model-based falsification of an artificial pancreas control system. ACM SIGBED Review, 14(2), 24–33.
Sankaranarayanan, S., & Tiwari, A. (2011). Relational abstractions for continuous and hybrid systems. In International Conference on Computer Aided Verification. Lecture Notes in Computer Science (Vol. 6806, pp. 686–702). Berlin: Springer.
Siper, M. J. (2005). An Introduction to mathematical theory of computation (2nd ed.). Toronto: Thompson Publishing (Course Technology)
Skyler, J. S. (Ed.). (2012). Atlas of diabetes (4th ed.). Berlin: Springer.
Sontag, E. D. (1981). Nonlinear regulation: The piecewise linear approach. IEEE Transactions on Automatic Control, 26(2), 346–358.
Steil, G., Panteleon, A., & Rebrin, K. (2004). Closed-sloop insulin delivery—the path to physiological glucose control. Advanced Drug Delivery Reviews, 56(2), 125–144.
Steil, G. M. (2013). Algorithms for a closed-loop artificial pancreas: The case for proportional-integral-derivative control. Journal of Diabetes Science and Technology, 7, 1621–1631.
Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). Cambridge: MIT Press.
Teixeira, R. E., & Malin, S. (2008). The next generation of artificial pancreas control algorithms. Journal of Diabetes Science and Technology, 2, 105–112.
Tjeng, V., & Tedrake, R. (2017). Verifying neural networks with mixed integer programming. http://arxiv.org/abs/1711.07356
Topcu, U., & Packard, A. (2009). Stability region analysis for uncertain nonlinear systems. IEEE Transactions on Automatic Control, 54, 1042–1047.
Topcu, U., Seiler, P., & Packard, A. (2008). Local stability analysis using simulations and sum-of-squares programming. Automatica, 44, 2669–2675.
Tuncali, C. E., Fainekos, G., Ito, H., & Kapinski, J. (2018). Simulation-based adversarial test generation for autonomous vehicles with machine learning components. In Proceedings of IEEE Intelligent Vehicles Symposium (IV)
Tuncali, C. E., Kapinski, J., Ito, H., & Deshmukh, J. V. (2018). Reasoning about safety of learning-enabled components in autonomous cyber-physical systems. In Proceedings of the 55th Annual Design Automation Conference, DAC 2018 (pp. 30:1–30:6). New York: ACM.
Ulus, D. (2017). Montre: A tool for monitoring timed regular expressions. In Proceedings of the International Conference on Computer Aided Verification (pp. 329–335). Berlin: Springer.
Ulus, D., Ferrère, T., Asarin, E., & Maler, O. (2014). Timed pattern matching. In Proceedings of the International Conference on Formal Modeling and Analysis of Timed Systems (pp. 222–236). Berlin: Springer.
Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Jin, X. (2016). Symbolic-numeric reachability analysis of closed-loop control software. In Hybrid Systems: Computation and Control (HSCC) (pp. 135–144). New York: ACM Press.
Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Kapinski, J. (2013). A trajectory splicing approach to concretizing counterexamples for hybrid systems. In IEEE Conference on Decision and Control (CDC) (pp. 3918–3925). New York: IEEE Press.
Zutshi, A., Sankaranarayanan, S., Deshmukh, J., & Kapinski, J. (2014). Multiple-shooting CEGAR-based falsification for hybrid systems. In International Conference on Embedded Software (EMSOFT) (pp. 5:1–5:10). New York: ACM Press.
Zutshi A., Sankaranarayanan S., & Tiwari A. (2012). Timed relational abstractions for sampled data control systems. In P. Madhusudan & S. A. Seshia (Eds.), Computer Aided Verification. Lecture Notes in Computer Science (Vol. 7358). Berlin: Springer.
Acknowledgements
We dedicate this chapter to the memory of Dr. Oded Maler, a great friend and collaborator, who shaped our knowledge and perspectives on this vast topic through numerous insightful discussions over the years. The authors also acknowledge contributions from numerous collaborators with special thanks to Xin Chen, Georgios Fainekos, James Kapinski, Nikos Aréchiga, Xiaoqing Jin, and Aditya Zutshi.
This work was funded in part by the US National Science Foundation (NSF) under award numbers CAREER 0953941, CNS 1319457, CPS 1446900, SHF 1527075, CPS 1646556, CCF 1837131, and the Air Force Research Laboratory (AFRL). All opinions expressed are those of the authors and not necessarily of the US NSF or AFRL.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Deshmukh, J.V., Sankaranarayanan, S. (2019). Formal Techniques for Verification and Testing of Cyber-Physical Systems. In: Al Faruque, M., Canedo, A. (eds) Design Automation of Cyber-Physical Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-13050-3_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-13050-3_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-13049-7
Online ISBN: 978-3-030-13050-3
eBook Packages: EngineeringEngineering (R0)