Skip to main content

A Benchmark Library for Parametric Timed Model Checking

  • Conference paper
  • First Online:
Formal Techniques for Safety-Critical Systems (FTSCS 2018)

Abstract

Verification of real-time systems involving hard timing constraints and concurrency is of utmost importance. Parametric timed model checking allows for formal verification in the presence of unknown timing constants or uncertainty (e. g., imprecision for periods). With the recent development of several techniques and tools to improve the efficiency of parametric timed model checking, there is a growing need for proper benchmarks to test and compare fairly these tools. We present here a benchmark library for parametric timed model checking made of benchmarks accumulated over the years. Our benchmarks include academic benchmarks, industrial case studies and examples unsolvable using existing techniques.

This work is partially supported by the ANR national research program PACS (ANR-14-CE28-0002) and by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    “Formal Methods for Timing Verification Challenge", in the WATERS workshop: http://waters2015.inria.fr/.

  2. 2.

    In a hybrid automaton, a parameter is a variable that can evolve for an arbitrary amount of time at rate 1, and is then “frozen” (rate 0).

References

  1. Abdeddaïm, Y., Maler, O.: Job-shop scheduling using timed automata. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 478–492. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4_46

    Chapter  Google Scholar 

  2. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing for timed automata. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 245–256. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-540-49382-2_22

    Chapter  Google Scholar 

  3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing, STOC 1993, pp. 592–601. ACM, New York (1993)

    Google Scholar 

  4. André, É.: Observer patterns for real-time systems. In: Liu, Y., Martin, A. (eds.) 18th IEEE International Conference on Engineering of Complex Computer Systems, ICECCS 2013, pp. 125–134. IEEE Computer Society, July 2013. https://doi.org/10.1109/ICECCS.2013.26

  5. André, É.: What’s decidable about parametric timed automata? Int. J. Softw. Tools Technol. Transf. (2018, to appear). https://doi.org/10.1007/s10009-017-0467-0

  6. André, É., Chatain, Th., De Smet, O., Fribourg, L., Ruel, S.: Synthèse de contraintes temporisées pour une architecture d’automatisation en réseau. In: Lime, D., Roux, O.H. (eds.) Actes du 7ème colloque sur la modélisation des systèmes réactifs, MSR 2009. Journal Européen des Systèmes Automatisés, vol. 43, pp. 1049–1064. Hermès, November 2009

    Google Scholar 

  7. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009). https://doi.org/10.1142/S0129054109006905

    Article  MathSciNet  MATH  Google Scholar 

  8. André, É., Coti, C., Nguyen, H.G.: Enhanced distributed behavioral cartography of parametric timed automata. In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 319–335. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_21

    Chapter  Google Scholar 

  9. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_6

    Chapter  Google Scholar 

  10. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty. In: Lin, A.W., Sun, J. (eds.) Proceedings of the 23rd International Conference on Engineering of Complex Computer Systems, ICECCS 2018. IEEE (2018, to appear)

    Google Scholar 

  11. André, É., Lime, D., Ramparison, M.: TCTL model checking lower/upper-bound parametric timed automata without invariants. In: Jansen, D., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00151-3_3

    Chapter  MATH  Google Scholar 

  12. André, É., Lime, D., Ramparison, M.: Timed automata with parametric updates. In: Juhás, G., Chatain, T., Grosu, R. (eds.) Proceedings of the 18th International Conference on Application of Concurrency to System Design, ACSD 2018, pp. 21–29. IEEE (2018, to appear). https://doi.org/10.1109/ACSD.2018.000-2

  13. André, É., Lin, S.-W.: Learning-based compositional parameter synthesis for event-recording automata. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 17–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60225-7_2

    Chapter  Google Scholar 

  14. André, É., Liu, Y., Sun, J., Dong, J.S., Lin, S.-W.: PSyHCoS: parameter synthesis for hierarchical concurrent real-time systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 984–989. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_70

    Chapter  Google Scholar 

  15. Beneš, N., Bezděk, P., Larsen, K.G., Srba, J.: Language emptiness of continuous-time parametric timed automata. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 69–81. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_6

    Chapter  MATH  Google Scholar 

  16. Bozzelli, L., La Torre, S.: Decision problems for lower/upper bound parametric timed automata. Formal Methods Syst. Des. 35(2), 121–151 (2009). https://doi.org/10.1007/s10703-009-0074-0

    Article  MATH  Google Scholar 

  17. Cassez, F., Larsen, K.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 138–152. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44618-4_12

    Chapter  Google Scholar 

  18. Chen, X., Schupp, S., Makhlouf, I.B., Ábrahám, E., Frehse, G., Kowalewski, S.: A benchmark suite for hybrid systems reachability analysis. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 408–414. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17524-9_29

    Chapter  Google Scholar 

  19. Chevallier, R., Encrenaz-Tiphène, E., Fribourg, L., Xu, W.: Timed verification of the generic architecture of a memory circuit using parametric timed automata. Formal Methods Syst. Des. 34(1), 59–81 (2009). https://doi.org/10.1007/s10703-008-0061-x

    Article  MATH  Google Scholar 

  20. Clarisó, R., Cortadella, J.: Verification of concurrent systems with parametric delays using octahedra. In: Proceedings of the Fifth International Conference on Application of Concurrency to System Design, ACSD 2005, pp. 122–131. IEEE Computer Society (2005). https://doi.org/10.1109/ACSD.2005.34

  21. Clarisó, R., Cortadella, J.: The octahedron abstract domain. Sci. Comput. Program. 64(1), 115–139 (2007). https://doi.org/10.1016/j.scico.2006.03.009

    Article  MathSciNet  MATH  Google Scholar 

  22. Collomb-Annichini, A., Sighireanu, M.: Parameterized reachability analysis of the IEEE 1394 root contention protocol using TReX. In: Proceedings of the Real-Time Tools Workshop, RT-TOOLS 2001 (2001)

    Google Scholar 

  23. D’Argenio, P.R., Katoen, J.-P., Ruys, T.C., Tretmans, J.: The bounded retransmission protocol must be on time!. In: Brinksma, E. (ed.) TACAS 1997. LNCS, vol. 1217, pp. 416–431. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0035403

    Chapter  Google Scholar 

  24. Frehse, G.: PHAVer: algorithmic verification of hybrid systems past HyTech. Int. J. Softw. Tools Technol. Transf. 10(3), 263–279 (2008). https://doi.org/10.1007/s10009-007-0062-x

    Article  MATH  Google Scholar 

  25. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_30

    Chapter  Google Scholar 

  26. Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: A user guide to HyTech. In: Brinksma, E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019, pp. 41–71. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0_3

    Chapter  Google Scholar 

  27. Hoxha, B., Abbas, H., Fainekos, G.E.: Benchmarks for temporal logic requirements for automotive systems. In: Frehse, G., Althoff, M. (eds.) Proceedings of the 1st and 2nd International Workshops on Applied veRification for Continuous and Hybrid Systems, ARCH@CPSWeek 2014/ARCH@CPSWeek 2015. EPiC Series in Computing, vol. 34, pp. 25–30. EasyChair (2014). http://www.easychair.org/publications/paper/250954

  28. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002). https://doi.org/10.1016/S1567-8326(02)00037-1

    Article  MathSciNet  MATH  Google Scholar 

  29. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 401–415. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_28

    Chapter  MATH  Google Scholar 

  30. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for timed automata. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015)

    Article  Google Scholar 

  31. Knapik, M., Penczek, W.: Bounded model checking for parametric timed automata. In: Jensen, K., Donatelli, S., Kleijn, J. (eds.) Transactions on Petri Nets and Other Models of Concurrency V. LNCS, vol. 6900, pp. 141–159. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29072-5_6

    Chapter  Google Scholar 

  32. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

    Article  MathSciNet  Google Scholar 

  33. Li, J., Sun, J., Gao, B., André, É.: Classification-based parameter synthesis for parametric timed automata. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 243–261. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-5_15

    Chapter  Google Scholar 

  34. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-checker for petri nets with stopwatches. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 54–57. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_6

    Chapter  Google Scholar 

  35. Lipari, G., Sun, Y., André, É., Fribourg, L.: Toward parametric timed interfaces for real-time components. In: Andre, E., Frehse, G. (eds.) 1st International Workshop on Synthesis of Continuous Parameters, SynCoP 2014. Electronic Proceedings in Theoretical Computer Science, vol. 145, pp. 49–64, April 2014. https://doi.org/10.4204/EPTCS.145.6

    Article  MathSciNet  Google Scholar 

  36. Nguyen, H.G., Petrucci, L., van de Pol, J.: Layered and collecting NDFS with subsumption for parametric timed automata. In: Lin, A.W., Sun, J. (eds.) Proceedings of the 23rd International Conference on Engineering of Complex Computer Systems, ICECCS 2018. IEEE, December 2018 (to appear)

    Google Scholar 

  37. Palencia Gutiérrez, J.C., González Harbour, M.: Schedulability analysis for tasks with static and dynamic offsets. In: Proceedings of the 19th IEEE Real-Time Systems Symposium, RTSS 1998, pp. 26–37. IEEE Computer Society (1998). https://doi.org/10.1109/REAL.1998.739728

  38. Sankur, O.: Symbolic quantitative robustness analysis of timed automata. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 484–498. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_48

    Chapter  Google Scholar 

  39. Sun, Y., André, É., Lipari, G.: Verification of two real-time systems using parametric timed automata. In: Quinton, S., Vardanega, T. (eds.) Proceedings of the 6th International Workshop on Analysis Tools and Methodologies for Embedded and Real-time Systems, WATERS 2015, July 2015

    Google Scholar 

  40. Sun, Y., Soulat, R., Lipari, G., André, É., Fribourg, L.: Parametric schedulability analysis of fixed priority real-time distributed systems. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2013. CCIS, vol. 419, pp. 212–228. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05416-2_14

    Chapter  Google Scholar 

  41. Traonouez, L.M., Lime, D., Roux, O.H.: Parametric model-checking of stopwatch Petri nets. J. Univers. Comput. Sci. 15(17), 3273–3304 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Wandeler, E., Thiele, L., Verhoef, M., Lieverse, P.: System architecture evaluation using modular performance analysis: a case study. Int. J. Softw. Tools Technol. Transf. 8(6), 649–667 (2006). https://doi.org/10.1007/s10009-006-0019-5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Étienne André .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

André, É. (2019). A Benchmark Library for Parametric Timed Model Checking. In: Artho, C., Ölveczky, P. (eds) Formal Techniques for Safety-Critical Systems. FTSCS 2018. Communications in Computer and Information Science, vol 1008. Springer, Cham. https://doi.org/10.1007/978-3-030-12988-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12988-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12987-3

  • Online ISBN: 978-3-030-12988-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics