Advertisement

The Asphalt Ecosystem of the Southern Gulf of Mexico: Abyssal Habitats Across Space and Time

  • Ian R. MacDonaldEmail author
  • Adriana Gaytan-Caballero
  • Elva Escobar-Briones
Chapter

Abstract

Recent findings cap more than a decade of research on habitats for chemoautotrophic fauna that are generated by hydrocarbon seepage at abyssal depths in the southern Gulf of Mexico. Extensive pavements (3300 m2) of asphalt, created by repeated, slow discharges, are sparsely colonized by tubeworms that tap reduced sulfur compounds through cracks and fissures in the solidified material. At depths greater than 3000 m, gas hydrate forms instantaneously, generating frozen mounds 10 m or greater in diameter. These deposits are apparently stable for decades or longer, because they are colonized by massive arrays of tubeworms. The asphalt ecosystem of the southern Gulf poses special challenges for expanding deep-water oil production and many potential chemosynthetic habitats remain unexplored.

Keywords

Chemosynthetic community Cold seep Gas hydrate Asphalt volcanism Deep sea 

Notes

Acknowledgments

We gratefully acknowledge contributions of the German research vessel METEOR, its crew, our colleagues in the MARUM group, University of Bremen, Germany, and especially the late Heiko Sahling, chief scientist. IRM also acknowledges support from the Gulf of Mexico Research Initiative/ECOGIG-2. 

References

  1. Abrams MA (2005) Significance of hydrocarbon seepage relative to petroleum generation and entrapment. Mar Pet Geol 22:457–477CrossRefGoogle Scholar
  2. Bergquist DC, Ward T, Cordes EE, McNelis T, Howlett S, Kosoff R, Hourdez S, Carney R, Fisher CR (2003) Community structure of vestimentiferan-generated habitat islands from Gulf of Mexico cold seeps. J Exp Mar Biol Ecol 289:197–222CrossRefGoogle Scholar
  3. Bern TI, Wahl T, Anderssen T, Olsen R (1993) Oil-spill detection using satellite based SAR – experience from a field experiment. Photogramm Eng Remote Sens 59:423–428Google Scholar
  4. Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626CrossRefGoogle Scholar
  5. Bohrmann G, Schenck S (2004) GEOMAR cruise report SO 174, OTEGA II, RV ‘SONNE’, GEOMAR report, KielGoogle Scholar
  6. Brooks JM, Kennicutt MC II, Fisher CR, Macko SA, Cole K, Childress JJ, Bidigare RR, Vetter RD (1987) Deep-sea hydrocarbon seep communities: evidence for energy and nutritional carbon sources. Science 238:1138–1142CrossRefGoogle Scholar
  7. Bruening M, Sahling H, MacDonald IR, Ding F, Bohrmann G (2010) Origin, distribution, and alteration of asphalts at Chapopote Knoll, Southern Gulf of Mexico. Mar Pet Geol 27:1093–1106CrossRefGoogle Scholar
  8. Carney SL, Formica MI, Divatia H, Nelson K, Fisher CR, Schaeffer SW (2006) Population structure of the mussel “Bathymodiolus” childressi from Gulf of Mexico hydrocarbon seeps. Deep-Sea Res I Oceanogr Res Pap 53:1061–1072CrossRefGoogle Scholar
  9. Childress JJ, Fisher CR, Brooks JM, Kennicutt MC II, Bidigare R, Anderson A (1986) A methanotrophic marine mulluscan (Bivalvia, Mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308CrossRefGoogle Scholar
  10. Cordes EE, Bergquist DC, Fisher CR (2009) Macro-ecology of Gulf of Mexico cold seeps. Annu Rev Mar Sci 1:143–168CrossRefGoogle Scholar
  11. De Beukelaer SM, MacDonald IR, Guinnasso NL, Murray JA (2003) Distinct side-scan sonar, RADARSAT SAR, and acoustic profiler signatures of gas and oil seeps on the Gulf of Mexico slope. Geo-Mar Lett 23:177–186CrossRefGoogle Scholar
  12. Ding F, Spiess V, Bruening M, Fekete N, Keil H, Bohrmann G (2008) A conceptual model for hydrocarbon accumulation and seepage processes around Chapopote asphalt site, southern Gulf of Mexico: from high resolution seismic point of view. J Geophys Res-Solid Earth 113:B08404CrossRefGoogle Scholar
  13. Fisher C, Childress J, Minnich E (1989) Autotrophic carbon fixation by the chemoautotorphic symbionts of Riftia pachyptila. Biol Bull 177:372–385CrossRefGoogle Scholar
  14. Fisher CR, Urcuyo I, Simpkins MA, Nix E (1997) Life in the slow lane: growth and longevity of cold-seep vestimentiferans. Mar Ecol 18:83–94CrossRefGoogle Scholar
  15. Freytag JK, Girguis PR, Andras JP, Bergquist DC, Fisher CR (1999) Sulfide uptake by buried portions of cold seep vestimentiferans can sustain autotrophic carbon fixation. Eos 80:OS5Google Scholar
  16. Frye M (2008) Preliminary evaluation of in-place gas hydrate resources: Gulf of Mexico outer continental shelf. U.S. Dept. Interior, Minerals Management Service, Resource Evaluation Division OCS report MMS 2008-004, 192 p, appendicesGoogle Scholar
  17. Gardiner SL, McMullin E, Fisher CR (2001) Seepiophila jonesi, a new genus and species of vestimentiferan tube worm (Annelida : Pogonophora) from hydrocarbon seep communities in the Gulf of Mexico. Proc Biol Soc Wash 114:694–707Google Scholar
  18. Gustafson RG, Turner RD, Lutz RA, Vrijenhoek RC (1998) A new genus and five new species of mussels (Bivalvia, Mytilidae) from deep-sea sulfide/hydrocarbon seeps in the Gulf of Mexico. Malacologia 40:63–112Google Scholar
  19. Harris AJL, Rowland SK (2015) Chapter 17 – Lava flows and rheology. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Academic Press, Amsterdam, pp 321–342CrossRefGoogle Scholar
  20. Kaiser MJ (2011) Economic limit of outer continental shelf Gulf of Mexico structure production. Appl Energy 88:2490–2508CrossRefGoogle Scholar
  21. Kennicutt MC, Brooks JM, Bidigare RR, Fay RR, Wade TL, McDonald TT (1985) Vent-type taxa in a hydrocarbon seep region on the Louisiana Slope. Nature 317:351–353CrossRefGoogle Scholar
  22. MacAvoy SE, Carney RS, Fisher CR, Macko SA (2002) Use of chemosynthetic biomass by large, mobile, benthic predators in the Gulf of Mexico. Mar Ecol Prog Ser 225:65–78CrossRefGoogle Scholar
  23. MacDonald IR, Reilly JF II, Guinasso JRNL, Brooks JM, Carney RS, Bryant WA, Bright TJ (1990) Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248:1096–1099CrossRefGoogle Scholar
  24. MacDonald I, Guinasso N, Ackleson S, Amos J, Duckworth R, Sassen R, Brooks J (1993) Natural oil-slicks in the Gulf of Mexico visible from space. J Geophys Res Oceans 98:16351–16364CrossRefGoogle Scholar
  25. Macdonald IR, Guinasso NL, Sassen R, Brooks JM, Lee L, Scott KT (1994) Gas hydrate that breaches the sea-floor on the continental-slope of the Gulf-of-Mexico. Geology 22:699–702CrossRefGoogle Scholar
  26. MacDonald IR, Bohrmann G, Escobar E, Abegg F, Blanchon P, Blinova V, Brückmann W, Drews M, Eisenhauer A, Han X, Heeschen K, Meier F, Mortera C, Naehr T, Orcutt B, Bernard B, Brooks J, de Faragó M (2004) Asphalt volcanism and chemosynthetic life, Campeche Knolls, Gulf of Mexico. Science 304:999–1002CrossRefGoogle Scholar
  27. MacDonald IR, Garcia-Pineda O, Beet A, Daneshgar Asl S, Feng L, Graettinger G, French-McCay D, Holmes J, Hu C, Huffer F (2015) Natural and unnatural oil slicks in the Gulf of Mexico. J Geophys Res Oceans 120:8364–8380CrossRefGoogle Scholar
  28. Marcon Y, Sahling H, Bohrmann G (2013) LAPM: a tool for underwater large-area photo-mosaicking. Geosci Instrum Methods Data Syst 2:189–198CrossRefGoogle Scholar
  29. Marcon Y, Sahling H, MacDonald IR, Wintersteller P, dos Santos Ferreira C, Bohrmann G (2018) Slow volcanoes: the intriguing similarities between marine asphalt and basalt lavas. Oceanography 31.  https://doi.org/10.5670/oceanog.2018.202
  30. Milkov AV (2000) Worldwide distribution of submarine mud volcanoes and associated gas hydrates. Mar Geol 167:29–42CrossRefGoogle Scholar
  31. Minerals Management Service (MMS) (1988) Implementation of measures to detect and protect deep water chemosynthetic communities. MMS Gulf of Mexico Regional OCS Office. Gulf of Mexico Regional OCS OfficeGoogle Scholar
  32. Reilly JF, MacDonald IR, Biegert EK, Brooks JM (1996) Geologic controls on the distribution of chemosynthetic communities in the Gulf of Mexico. In: Schumacher D, Abrams MA (eds) Hydrocarbon migration and its near-surface expression. American Association of Petroleum Geologists, Tulsa, pp 38–61Google Scholar
  33. Roberts H, Boland G (2010) Gulf of Mexico cold seeps: preface. Deep-Sea Res II Top Stud Oceanogr 57:1835–1837CrossRefGoogle Scholar
  34. Roberts HH, Carney RS (1997) Evidence of episodic fluid, gas, and sediment venting on the northern Gulf of Mexico continental slope. Econ Geol Bull Soc Econ Geol 92:863–879CrossRefGoogle Scholar
  35. Roberts HH, Feng D (2013) Carbonate precipitation at Gulf of Mexico hydrocarbon seeps: an overview. In: Abrams M, Aminzadeh F, Berge T, Connolly D, O’Brien G (eds) Hydrocarbon seepage: from source to surface. Society of Exploration Geophysicists and American Assocation of Petroleum GeologistsGoogle Scholar
  36. Roberts HH, Feng D, Joye SB (2010) Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep-Sea Res II Top Stud Oceanogr 57:2040–2054CrossRefGoogle Scholar
  37. Sahling H, Borowski C, Escobar-Briones E, Gaytan-Caballero A, Hsu CW, Loher M, MacDonald I, Marcon Y, Pape T, Romer M, Rubin-Blum M, Schubotz F, Smrzka D, Wegener G, Bohrmann G (2016) Massive asphalt deposits, oil seepage, and gas venting support abundant chemosynthetic communities at the Campeche Knolls, southern Gulf of Mexico. Biogeosciences 13:4491–4512CrossRefGoogle Scholar
  38. Wood W, Ruppel C (2000) Seismic and thermal investigations of hydrate bearing sediments on the Blake Ridge Crest: a synthesis of ODP Leg 164 results. Proc Ocean Drill Program Sci Results 164:253–264Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ian R. MacDonald
    • 1
    Email author
  • Adriana Gaytan-Caballero
    • 2
  • Elva Escobar-Briones
    • 2
  1. 1.Florida State University, Earth, Ocean and Atmospheric SciencesTallahasseeUSA
  2. 2.Universidad Nacional Autónoma de México, El Instituto de Ciencias del Mar y LimnologíaMexico CityMexico

Personalised recommendations