Evaluating Impacts of Deep Oil Spills on Oceanic Marine Mammals

  • Kaitlin E. FrasierEmail author


The Deepwater Horizon (DWH) oil spill may be indicative of future large, deep spills that may occur in the coming decades. Given that future deepwater spills are possible, critical considerations include (1) establishing baselines for oceanic marine mammal and populations in at-risk areas, (2) understanding the implications of response choices for oceanic marine mammals, (3) designing studies with adequate coverage for post-spill monitoring, and (4) identifying effective strategies for oceanic marine mammal restoration. In this chapter, we consider these four stages in the context of a series of hypothetical oil spill scenarios, identifying ways that lessons learned from the DWH oil spill and prior events can be applied to future disasters.


Marine mammal Sperm whale Beaked whale Dolphin Passive acoustic monitoring (PAM) Megafauna Mammal Odontocete Bryde’s whale Spotted dolphin Stenella Kogia Echolocation Visual survey Ship strike Noise Air gun HARP Mississippi Canyon Green Canyon Risso’s dolphin Pilot whale Tag Aerial survey Habitat model Loop Current AUV Satellite Genetic Monitoring Dispersant Hazing Deterrent NRDA Cetacean Disturbance NOAA Stock Restoration Mexico Seismic 



Collaborators John A. Hildebrand and Alba Solsona Berga from the Scripps Institution of Oceanography contributed substantially to the ideas discussed in this review.

This research was made possible by a grant from The Gulf of Mexico Research Initiative/C-IMAGE I, II, and III. Funding for HARP data collection and analysis was also provided by the Natural Resource Damage Assessment partners (20105138), the US Marine Mammal Commission (20104755/E4061753), the Southeast Fisheries Science Center under the Cooperative Institute for Marine Ecosystems and Climate (NA10OAR4320156) with support through Interagency Agreement #M11PG00041 between the Bureau of Offshore Energy Management, Environmental Studies Program, and the National Marine Fisheries Service, Southeast Fisheries Science Center. The analyses and opinions expressed are those of the authors and not necessarily those of the funding entities. The data used for this study are archived by the Gulf of Mexico Research Initiative at maintained by the Gulf Research Initiative Information and Data Cooperative.


  1. Ackleh A, Caswell H, Chiquet R, Tang T, Veprauskas A (2018) Sensitivity analysis of the recovery time for a population under the impact of an environmental disturbance. Nat Resour Model:e12166CrossRefGoogle Scholar
  2. Alter SE, Rynes E, Palumbi SR (2007) DNA evidence for historic population size and past ecosystem impacts of gray whales. Proc Natl Acad Sci 104(38):15162–15167CrossRefGoogle Scholar
  3. Baird RW, Schorr GS, Webster DL, McSweeney DJ, Hanson MB, Andrews RD (2010) Movements and habitat use of satellite-tagged false killer whales around the main Hawaiian Islands. Endanger Species Res 10:107–121CrossRefGoogle Scholar
  4. Barlow J, Forney KA (2007) Abundance and population density of cetaceans in the California Current ecosystem. Fish Bull 105(4):509–526Google Scholar
  5. Bevan E, Wibbels T, Navarro E, Rosas M, Najera BM, Sarti L, Illescas F, Montano J, Peña LJ, Burchfield P (2016) Using unmanned aerial vehicle (UAV) technology for locating, identifying, and monitoring courtship and mating behaviour in the green turtle (Chelonia mydas). Herpetol Rev 47:27–32Google Scholar
  6. BOEM Data Center (2018); Accessed 26 June 2018Google Scholar
  7. BOEM, NOAA (2015) Commercial vessel density October 2009–2010 AIS National. Accessed 9/15/2018Google Scholar
  8. Bonebrake TC, Christensen J, Boggs CL, Ehrlich PR (2010) Population decline assessment, historical baselines, and conservation. Conserv Lett 3(6):371–378CrossRefGoogle Scholar
  9. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2007) Advanced distance sampling: estimating abundance of biological populations, OxfordGoogle Scholar
  10. Calambokidis J, Schorr GS, Steiger GH, Francis J, Bakhtiari M, Marshall G, Oleson EM, Gendron D, Robertson K (2007) Insights into the underwater diving, feeding, and calling behavior of blue whales from a suction-cup-attached video-imaging tag (CRITTERCAM). Mar Technol Soc J 41(4):19–29CrossRefGoogle Scholar
  11. Carrillo M, Ritter F (2010) Increasing numbers of ship strikes in the Canary Islands: proposals for immediate action to reduce risk of vessel-whale collisions. J Cetacean Res Manag 11(2):131–138Google Scholar
  12. Cholewiak D, DeAngelis AI, Palka D, Corkeron PJ, Van Parijs SM (2017) Beaked whales demonstrate a marked acoustic response to the use of shipboard echosounders. R Soc Open Sci 4(12):170940CrossRefGoogle Scholar
  13. Cordes EE, Jones DO, Schlacher TA, Amon DJ, Bernardino AF, Brooke S, Carney R, DeLeo DM, Dunlop KM, Escobar-Briones EG (2016) Environmental impacts of the deep-water oil and gas industry: a review to guide management strategies. Front Environ Sci 4:58CrossRefGoogle Scholar
  14. Costa DP, Block B, Bograd S, Fedak MA, Gunn JS (2010) TOPP as a marine life observatory: using electronic tags to monitor the movements, behaviour and habitats of marine vertebrates. Proce OceanObs 9:21–25Google Scholar
  15. Cox TM, Ragen T, Read A, Vos E, Baird R, Balcomb K, Barlow J, Caldwell J, Cranford T, Crum L (2006) Understanding the impacts of anthropogenic sound on beaked whales. SPACE AND NAVAL WARFARE SYSTEMS CENTER SAN DIEGO CAGoogle Scholar
  16. Davis RW, Fargion GS, May N, Leming TD, Baumgartner M, Evans WE, Hansen LJ, Mullin K (1998) Physical habitat of cetaceans along the continental slope in the northcentral and western Gulf of Mexico. Mar Mamm Sci 14(3):490–507CrossRefGoogle Scholar
  17. Davis RW, Ortega-Ortiz JG, Ribic CA, Evans WE, Biggs DC, Ressler PH, Cady RB, Leben RR, Mullin KD, Wursig B (2002) Cetacean habitat in the northern oceanic Gulf of Mexico. Deep-Sea Res I Oceanogr Res Pap 49(1):121–142. Scholar
  18. De Bruyn M, Hall BL, Chauke LF, Baroni C, Koch PL, Hoelzel AR (2009) Rapid response of a marine mammal species to Holocene climate and habitat change. PLoS Genet 5(7):e1000554CrossRefGoogle Scholar
  19. Ellison W, Southall B, Clark C, Frankel A (2012) A new context-based approach to assess marine mammal behavioral responses to anthropogenic sounds. Conserv Biol 26(1):21–28CrossRefGoogle Scholar
  20. Fisher CR, Montagna PA, Sutton TT (2016) How did the Deepwater Horizon oil spill impact deep-sea ecosystems? Oceanography 29(3):182–195CrossRefGoogle Scholar
  21. Forney KA, Ferguson MC, Becker EA, Fiedler PC, Redfern JV, Barlow J, Vilchis IL, Ballance LT (2012) Habitat-based spatial models of cetacean density in the eastern Pacific Ocean. Endanger Species Res 16(2):113–133CrossRefGoogle Scholar
  22. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10(6):1500–1508CrossRefGoogle Scholar
  23. Frasier KE (2015) Density estimation of delphinids using passive acoustics: a case study in the Gulf of Mexico. Ph.D. Thesis, The University of California San Diego, La Jolla, CAGoogle Scholar
  24. Frasier KE, Wiggins SM, Harris D, Marques TA, Thomas L, Hildebrand JA (2016) Delphinid echolocation click detection probability on near-seafloor sensors. J Acoust Soc Am 140(3):1918–1930. Scholar
  25. Frasier KE, Solsona-Berga A, Stokes L, Hildebrand JA (2020) Impacts of the Deepwater Horizon oil spill on marine mammals and sea turtles (Chap. 26). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Deep Oil Spills – facts, fate and effects. Springer, ChamGoogle Scholar
  26. French-McCay D, Crowley D, Rowe JJ, Bock M, Robinson H, Wenning R, Walker AH, Joeckel J, Nedwed TJ, Parkerton TF (2018) Comparative risk assessment of spill response options for a Deepwater oil well blowout: part 1. Oil spill modeling. Mar Pollut Bull 133:1001–1015CrossRefGoogle Scholar
  27. Fretwell PT, Staniland IJ, Forcada J (2014) Whales from space: counting southern right whales by satellite. PLoS One 9(2):e88655CrossRefGoogle Scholar
  28. Fujioka E, Kot CY, Wallace BP, Best BD, Moxley J, Cleary J, Donnelly B, Halpin PN (2014) Data integration for conservation: leveraging multiple data types to advance ecological assessments and habitat modeling for marine megavertebrates using OBIS-SEAMAP. Eco Inform 20:13–26. Scholar
  29. Fulling GL, Mullin KD, Hubard CW (2003) Abundance and distribution of cetaceans in outer continental shelf waters of the US Gulf of Mexico. Fish Bull 101(4):923–932Google Scholar
  30. Geraci JR (1990) Physiologic and toxic effects on cetaceans. In: Geraci JR, St. Aubin DJ (eds) Sea mammals and oil: confronting the risks. Academic Press, Inc., San Diego, pp 167–192Google Scholar
  31. Goodale DR, Hyman MA, Winn HE, Edkel R, Tyrell M (1981) Cetacean responses in association with the Regal Sword oil spill. Cetacean and Turtle Assessment Program, University of Rhode Island, Annual Report 1979. U.S. Dept. of the Interior, Washington, D. CGoogle Scholar
  32. Goolsby DA, Pereira WE (1996) Pesticides in the Mississippi river. US GEOLOGICAL SURVEY CIRCULAR USGS CIRC:87–102Google Scholar
  33. Gregr EJ, Baumgartner MF, Laidre KL, Palacios DM (2013) Marine mammal habitat models come of age: the emergence of ecological and management relevance. Endanger Species Res 22(3):205–212CrossRefGoogle Scholar
  34. Harris RB, Allendorf FW (1989) Genetically effective population size of large mammals: an assessment of estimators. Conserv Biol 3(2):181–191CrossRefGoogle Scholar
  35. Hayes S, Josephson E, Maze-Foley K, Rosel P, Byrd B, Chavez-Rosales S, Col T, Engleby L, Garrison L, Hatch J, Henry A, Horstman S, Litz J, Lyssikatos M, Mullin K, Orphanides C, Pace R, Palka D, Soldevilla M, Wenzel F (2018) TM 245 US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments - 2017Google Scholar
  36. Hildebrand JA, Gentes ZE, Johnson SC, Frasier KE, Merkens KP, Thayre BJ, Wiggins SM (2013) Acoustic monitoring of Cetaceans in the Northern Gulf of Mexico using wave gliders equipped with high-frequency acoustic recording packages. MPL Tech Memo 539:35Google Scholar
  37. Hildebrand J, Baumann-Pickering S, Frasier K, Tricky J, Merkens K, Wiggins S, M M, Harris D, T M, Thomas L (2015) Passive acoustic monitoring of beaked whale densities in the Gulf of Mexico during and after the Deepwater Horizon oil spill. Nat Sci Rep 5:16343CrossRefGoogle Scholar
  38. Hildebrand JA, Frasier KE, Baumann-Pickering S, Wiggins SM, Merkens KP, Garrison LP, Soldevilla MS, McDonald MA (2019) Assessing seasonality and density from passive acoustic monitoring of signals presumed to be from pygmy and dwarf sperm whales in the gulf of mexico. Front Mar Sci 6Google Scholar
  39. Huntington HP (2009) A preliminary assessment of threats to arctic marine mammals and their conservation in the coming decades. Mar Policy 33(1):77–82CrossRefGoogle Scholar
  40. Jewell R, Thomas L, Harris CM, Kaschner K, Wiff R, Hammond PS, Quick NJ (2012) Global analysis of cetacean line-transect surveys: detecting trends in cetacean density. Mar Ecol Prog Ser 453:227–240CrossRefGoogle Scholar
  41. Jochens A, Biggs D, Benoit-Bird K, Engelhaupt D, Gordon J, Hu C, Jaquet N, Johnson M, Leben R, Mate B, Miller P, Ortega-Ortiz J, Thode A, Tyack P, Würsig B (2008) Sperm whale seismic study in the Gulf of Mexico: synthesis report, vol OCS Study MMS 2008–006. US Dept. of Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LAGoogle Scholar
  42. Johnson M, de Soto NA, Madsen PT (2009) Studying the behaviour and sensory ecology of marine mammals using acoustic recording tags: a review. Mar Ecol Prog Ser 395:55–73CrossRefGoogle Scholar
  43. Joye SB (2015) Deepwater Horizon, 5 years on. Science 349(6248):592–593CrossRefGoogle Scholar
  44. Kaschner K, Quick NJ, Jewell R, Williams R, Harris CM (2012) Global coverage of cetacean line-transect surveys: status quo, data gaps and future challenges. PLoS One 7(9):e44075CrossRefGoogle Scholar
  45. Kaushal SS, Likens GE, Pace ML, Utz RM, Haq S, Gorman J, Grese M (2018) Freshwater salinization syndrome on a continental scale. Proc Natl Acad Sci:201711234Google Scholar
  46. King SL, Schick RS, Donovan C, Booth CG, Burgman M, Thomas L, Harwood J (2015) An interim framework for assessing the population consequences of disturbance. Methods Ecol Evol 6(10):1150–1158CrossRefGoogle Scholar
  47. Klinck H, Mellinger DK, Klinck K, Bogue NM, Luby JC, Jump WA, Shilling GB, Litchendorf T, Wood AS, Schorr GS, Baird RW (2012) Near-real-time acoustic monitoring of beaked whales and other cetaceans using a seaglider (TM). PLoS One 7(5). Scholar
  48. Kujawinski E, Soule M, Valentine D, Boysen A, Longnecker K, Redmond M (2011) Fate of dispersants associated with the Deepwater Horizon Oil Spill. Environ Sci Technol 45(4):1298–1306. Scholar
  49. Malakoff D (2010) A push for quieter ships. Science 328:1502–1503CrossRefGoogle Scholar
  50. Mate BR, Stafford KM, Ljungblad DK (1994) A change in sperm whale (Physeter macrocephalus) distribution correlated to seismic surveys in the Gulf of Mexico. J Acoust Soc Am 96(5):3268–3269CrossRefGoogle Scholar
  51. Mate B, Mesecar R, Lagerquist B (2007) The evolution of satellite-monitored radio tags for large whales: one laboratory’s experience. Deep-Sea Res II Top Stud Oceanogr 54(3–4):224–247CrossRefGoogle Scholar
  52. Matkin CO, Saulifis EL, Ellis GM, Olesiuk P, Rice SD (2008) Ongoing population-level impacts on killer whales Orcinus orca following the Exxon Valdez oil spill in Prince William sound, Alaska. Mar Ecol Prog Ser 356:269–281CrossRefGoogle Scholar
  53. Maze-Foley K, Mullin K (2007) Cetaceans of the oceanic northern Gulf of Mexico: distributions, group sizes and interspecific associations. J Cetacean Res Manag 8(2):203Google Scholar
  54. Mellinger DK, Stafford KM, Moore SE, Dziak RP, Matsumoto H (2007) An overview of fixed passive acoustic observation methods for cetaceans. Oceanography 20(4):36–45. Scholar
  55. Miller PJ, Johnson M, Madsen PT, Biassoni N, Quero M, Tyack P (2009) Using at-sea experiments to study the effects of airguns on the foraging behavior of sperm whales in the Gulf of Mexico. Deep-Sea Res I Oceanogr Res Pap 56(7):1168–1181CrossRefGoogle Scholar
  56. Moore SE, Howe BM, Stafford KM, Boyd ML (2007) Including whale call detection in standard ocean measurements: application of acoustic Seagliders. Mar Technol Soc J 41(4):53–57CrossRefGoogle Scholar
  57. Mullin KD (2007) Abundance of cetaceans in the oceanic Gulf of Mexico based on 2003–2004 ship surveys. Available from: NMFS, Southeast Fisheries Science Center, PO Drawer 1207Google Scholar
  58. Mullin KD, Fulling GL (2003) Abundance of cetaceans in the southern US North Atlantic Ocean during summer 1998. Fish Bull 101(3):603–613Google Scholar
  59. Mullin KD, Fulling GL (2004) Abundance of cetaceans in the oceanic northern Gulf of Mexico, 1996-2001. Mar Mamm Sci 20(4):787–807. Scholar
  60. Mullin KD, Hoggard W (2000) Visual surveys of cetaceans and sea turtles from aircraft and ships. In: Davis R, WE, Wursig B (eds) Cetaceans, sea turtles and seabirds in the northern Gulf of Mexico: distribution, abundance and habitat associations, vol 2. Vol II Tech Rep. OCS Study MMS 96–0027. USGS/BRD/CR-1999-0006. , Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA, p 111–172Google Scholar
  61. Neff JM (1990) Composition and fate of petroleum and spill-treating agents in the marine environment. In: Sea mammals in oil: confronting the risks. Academic Press, Inc, San Diego, pp 1–33Google Scholar
  62. Neff J, Lee K, DeBlois EM (2011a) Produced water: overview of composition, fates, and effects. In: Produced water. Springer, pp 3–54Google Scholar
  63. Neff J, Sauer TC, Hart AD (2011b) Bioaccumulation of hydrocarbons from produced water discharged to offshore waters of the US Gulf of Mexico. In: Produced water. Springer, pp 441–477Google Scholar
  64. NMFS (2015) Endangered and threatened wildlife; 90-day finding on a petition to list the Gulf of Mexico Bryde’s whale as threatened or endangered under the endangered species act. vol 80 FR 18343Google Scholar
  65. NMFS (2017) NMFS Arctic marine mammal disaster response guidelines. NOAA Tech. Memo. U.S. Dep. Commer.
  66. NOAA (2014) Oil Spill emergency response killer whale - hazing implementation plan. NOAA Fisheries West Coast Region,Google Scholar
  67. Palka DL (2006) Summer abundance estimates of cetaceans in US North Atlantic navy operating areas. Northeast Fisheries Science Center Ref Doc:06–03Google Scholar
  68. Pereira WE, Hostettler FD (1993) Nonpoint source contamination of the Mississippi River and its tributaries by herbicides. Environ Sci Technol 27(8):1542–1552CrossRefGoogle Scholar
  69. Pirotta E, Booth CG, Costa DP, Fleishman E, Kraus SD, Lusseau D, Moretti D, New LF, Schick RS, Schwarz LK (2018) Understanding the population consequences of disturbance. Ecol Evol 8(19):9934–9946CrossRefGoogle Scholar
  70. Rabalais NN, Turner RE, Justic D, Dortch Q, Wiseman WJ, SenGupta BK (1996) Nutrient changes in the Mississippi River and system responses on the adjacent continental shelf. Estuaries 19(2B):386–407CrossRefGoogle Scholar
  71. Redfern JV, Ferguson MC, Becker EA, Hyrenbach KD, Good CP, Barlow J, Kaschner K, Baumgartner MF, Forney KA, Ballance LT (2006) Techniques for cetacean–habitat modeling. Mar Ecol Press Ser 310:271–195CrossRefGoogle Scholar
  72. Roberts JJ, Best BD, Mannocci L, Fujioka E, Halpin PN, Palka DL, Garrison LP, Mullin KD, Cole TV, Khan CB (2016) Habitat-based cetacean density models for the US Atlantic and Gulf of Mexico. Sci Rep 6Google Scholar
  73. Schwacke LH, Thomas L, Wells RS, McFee WE, Hohn AA, Mullin KD, Zolman ES, Quigley BM, Rowles TK, Schwacke JH (2017) Quantifying injury to common bottlenose dolphins from the Deepwater Horizon oil spill using an age-, sex-and class-structured population model. Endanger Species Res 33:265–279CrossRefGoogle Scholar
  74. SEFSC (2018) Gulf of Mexico marine mammal vessel surveys - NRDA. Retrieved from Scholar
  75. Sellas AB, Wells RS, Rosel PE (2005) Mitochondrial and nuclear DNA analyses reveal fine scale geographic structure in bottlenose dolphins (Tursiops truncatus) in the Gulf of Mexico. Conserv Genet 6(5):715–728CrossRefGoogle Scholar
  76. Sidorovskaia N, Li K, Tiemann C, Ackleh A, Tang T (2016) Long-term spatially distributed observations of deep diving marine mammals in the Northern Gulf of Mexico using passive acoustic monitoring. J Acoust Soc Am 140(4):3073–3073CrossRefGoogle Scholar
  77. Simonis AE, Roch MA, Bailey B, Barlow J, Clemesha RE, Iacobellis S, Hildebrand JA, Baumann-Pickering S (2017) Lunar cycles affect common dolphin Delphinus delphis foraging in the Southern California bight. Mar Ecol Prog Ser 577:221–235CrossRefGoogle Scholar
  78. Soldevilla MS, Wiggins SM, Hildebrand JA, Oleson EM, Ferguson MC (2011) Risso’s and Pacific white-sided dolphin habitat modeling from passive acoustic monitoring. Mar Ecol Prog Ser 423:247–260CrossRefGoogle Scholar
  79. Soldevilla MS, Hildebrand JA, Frasier KE, Dias LA, Martinez A, Mullin KD, Rosel PE, Garrison LP (2017) Spatial distribution and dive behavior of Gulf of Mexico Bryde’s whales: potential risk of vessel strikes and fisheries interactions. J Endanger Species Res 32:533–550CrossRefGoogle Scholar
  80. Southward A, Southward EC (1978) Recolonization of rocky shores in Cornwall after use of toxic dispersants to clean up the Torrey Canyon spill. J Fish Res Board Can 35(5):682–706CrossRefGoogle Scholar
  81. Stone CJ, Tasker ML (2006) The effects of seismic airguns on cetaceans in UK waters. J Cetacean Res Manag 8(3):255Google Scholar
  82. Taylor BL, Martinez M, Gerrodette T, Barlow J, Hrovat YN (2007) Lessons from monitoring trends in abundance of marine mammals. Mar Mamm Sci 23(1):157–175CrossRefGoogle Scholar
  83. Testa JM, Eric Adams E, North EW, He R (2016) Modeling the influence of deep water application of dispersants on the surface expression of oil: a sensitivity study. J Geophys Res Oceans 121(8):5995–6008. Scholar
  84. Trustees DHNRDA (2016) Injury to natural resources. In: Final Programmatic Damage Assessment and Restoration (PDARP) plan and final Programmatic Environmental Impact Statement (PEIS). Retrieved from, p 516
  85. Tyack PL (2008) Implications for marine mammals of large-scale changes in the marine acoustic environment. J Mammal 89(3):549–558CrossRefGoogle Scholar
  86. Vander Zanden HB, Bolten AB, Tucker AD, Hart KM, Lamont MM, Fujisaki I, Reich KJ, Addison DS, Mansfield KL, Phillips KF (2016) Biomarkers reveal sea turtles remained in oiled areas following the Deepwater Horizon oil spill. Ecol Appl 26(7):2145–2155CrossRefGoogle Scholar
  87. Waring GT, Josephson E, Fairfield-Walsh CP, Maze-Foley K (2009) US Atlantic and Gulf of Mexico marine mammal stock assessments - 2008. NOAA Tech Memo NMFS NE 210(440):11.10Google Scholar
  88. Waring GT, Josephson E, Maze-Foley K, Rosel PE (2015) US Atlantic and Gulf of Mexico marine mammal stock assessments - 2014. NOAA Tech Memo NMFS NE 231:361Google Scholar
  89. Weilgart LS (2007) The impacts of anthropogenic ocean noise on cetaceans and implications for management. Can J Zool 85(11):1091–1116CrossRefGoogle Scholar
  90. Wiggins SM, Hildebrand JA (2007) High-frequency Acoustic Recording Package (HARP) for broad-band, long-term marine mammal monitoring. Institute of Electrical and Electronics Engineers, Tokyo, Japan., International Symposium on Underwater Technology 2007 and International Workshop on Scientific Use of Submarine Cables & Related Technologies 2007Google Scholar
  91. Wilkin SM, Rowles TK, Stratton E, Adimey N, Field CL, Wissmann S, Shigenaka G, Fougères E, Mase B, Network SRS (2017) Marine mammal response operations during the Deepwater Horizon oil spill. Endanger Species Res 33:107–118CrossRefGoogle Scholar
  92. Williams R, Gero S, Bejder L, Calambokidis J, Kraus SD, Lusseau D, Read AJ, Robbins J (2011) Underestimating the damage: interpreting cetacean carcass recoveries in the context of the Deepwater Horizon/BP incident. Conserv Lett 4(3):228–233CrossRefGoogle Scholar
  93. Williams R, Thomas L, Ashe E, Clark CW, Hammond PS (2016) Gauging allowable harm limits to cumulative, sub-lethal effects of human activities on wildlife: a case-study approach using two whale populations. Mar Policy 70:58–64CrossRefGoogle Scholar
  94. Wright AJ, Deak T, Parsons E (2011) Size matters: management of stress responses and chronic stress in beaked whales and other marine mammals may require larger exclusion zones. Mar Pollut Bull 63(1–4):5–9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of California San Diego, Scripps Institution of Oceanography, Marine Physical LaboratoryLa JollaUSA

Personalised recommendations