Skip to main content

The Utility of Stable and Radioisotopes in Fish Tissues as Biogeochemical Tracers of Marine Oil Spill Food Web Effects

  • Chapter
  • First Online:
Scenarios and Responses to Future Deep Oil Spills

Abstract

Direct exposure to petroleum compounds was widely reported for a variety of taxa following the DWH. Evidence of exposure ranged from oiling of skin, shells, or feathers, depending on the taxa, to observation of ingested oil in small translucent, invertebrates, to biomarkers of petroleum compounds within an organism’s tissues, such as PAHs in the hepatopancreas of invertebrates or the liver of fishes, or metabolic products of PAH catabolism in the bile of various vertebrate taxa. Development of natural biogeochemical tracers to examine indirect effects, especially over long (months to years) time scales, can be much more problematic. In this chapter, we describe the utility of employing stable isotopes and radioisotopes to 1) examine whether food web effects can be inferred from shifts in stable isotope values measured in vertebrate taxa; 2) examine the assimilation and trophic transfer of petrocarbon in marine food webs; and, 3) serve as long-term biogeochemical tracers either of petrocarbon assimilation or trophic shifts that are indicative of food web effects of marine oil spills. Data and analyses are largely drawn from DWH-related studies but with broader implications to marine oil spills in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnett BK, Patterson WF III (2010) The effect of coring and pulverizing juvenile red snapper, Lutjanus campechanus, otoliths on their chemical signatures. Environ Biol Fish 89(3–4):463–417. https://doi.org/10.1007/s10641-010-9697-7

    Article  Google Scholar 

  • Barnett BK, Thorton LR, Allman RJ, Chanton JP, Patterson WF III (2018) Linear decline in red snapper (Lutjanus campechanus) otolith Δ14C extends the utility of the bomb radiocarbon chronometer for fish age validation in the Northern Gulf of Mexico. ICES J Mar Sci 75(5):1664–1771. https://doi.org/10.1093/icesjms/fsy043

    Article  Google Scholar 

  • Beyer J, Trannum HC, Bakke T, Hodson PV, Collier TK (2016) Environmental effects of the Deepwater Horizon oil spill: a review. Mar Pollut Bull 110:28–51. https://doi.org/10.1016/j.marpolbul.2016.06.027

    Article  CAS  Google Scholar 

  • Bosman SH, Chanton J, Rogers KL (2017) Using stable and radiocarbon analyses as a forensic tool to find evidence of oil in the particulates of the water column and on the seafloor following the 2010 Gulf of Mexico Oil Spill. In: Stout S, Wang Z (eds) Case studies in Oil Spill environmental forensics. Academic Press. https://doi.org/10.1016/B978-0-12-804434-6.00029-X

    Chapter  Google Scholar 

  • Chanton JP, Cherrier J, Wilson RM, Sarkodee-Adoo J, Bosman S, Mickel A, Graham WM (2012) Radiocarbon evidence that carbon from the Deepwater Horizon spill entered the planktonic food web of the Gulf of Mexico. Environ Res Lett 7:045303. https://doi.org/10.1088/1748-9326/7/4/045303

    Article  CAS  Google Scholar 

  • Chanton JP, Jaggi A, Radović JR, Rosenheim BE, Walker BD, Larter SR, Rogers K, Bosman S, Oldenburg TBP (2020) Mapping isotopic and dissolved organic matter baselines in waters and sediments of Gulf of Mexico (Chap. 10). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future Deep Oil Spills – fighting the next war. Springer, Cham

    Google Scholar 

  • Chasar LC, Chanton JP, Koenig CC, Coleman FC (2005) Evaluating the effect of environmental disturbance on the trophic structure of Florida Bay, USA: multiple stable isotope analyses of contemporary and historical specimens. Limnol Oceanogr 50(4):1059–1072. https://doi.org/10.4319/lo.2005.50.4.1059

    Article  CAS  Google Scholar 

  • Cherrier J, Sarkodee-Adoo J, Guilderson TP, Chanton JP (2013) Fossil carbon in particulate organic matter in the Gulf of Mexico following the Deepwater Horizon event. Environ Sci Tech Lett 2014(1):108–112. https://doi.org/10.1021/ez400149c

    Article  CAS  Google Scholar 

  • Crespo-Medina M, Meile CD, Hunter KS, Diercks AR, Asper VL, Orphan VJ, Tavormina PL, Nigro LM, Battles JJ, Chanton JP, Shiller AM, Joung DJ, Amon RMC, Bracco A, Montoya JP, Villareal TA, Wood AM, Joye SB (2014) The rise and fall of methanotrophy following a Deepwater oil-well blowout. Nat Geosci 7:423–427. https://doi.org/10.1038/NGEO2156

    Article  CAS  Google Scholar 

  • Dubinsky EA, Conrad ME, Chakraborty R, Bill M, Borglin SE, Hollibaugh JT, Mason OU, Piceno YM, Reid FC, Stringfellow WT, Tom LM, Hazen TC, Andersen GL (2013) Succession of hydrocarbon-degrading bacteria in the aftermath of the Deepwater Horizon Oil Spill in the Gulf of Mexico. Environ Sci Technol 47:10860–10867. https://doi.org/10.1021/es401676y

    Article  CAS  Google Scholar 

  • Fodrie FJ, Able KW, Galvez F, Heck KL Jr, Jensen OP, Lopez-Duarte PC, Martin CW, Turner RE, Whitehead A (2014) Integrating organismal and population responses of estuarine fishes in Macondo spill research. Bioscience 64:778–788. https://doi.org/10.1093/biosci/biu123

    Article  Google Scholar 

  • Fry B (2006) Stable isotope ecology. Springer-Verlag, New York

    Book  Google Scholar 

  • Fry B, Chumchal MC (2011) Sulfur stable isotope indicators of residency in estuarine fish. Limnol Oceanogr 56(5):1563–1576. https://doi.org/10.4319/lo.2011.56.5.1563

    Article  Google Scholar 

  • Gin KYH, Huda MK, Lim WK, Tkalich P (2001) An oil-spill food chain interaction model for coastal seas. Mar Pollut Bull 42(7):590–597. https://doi.org/10.1016/S0025-326X(00)00205-8

    Article  CAS  Google Scholar 

  • Goldman SF, Glasgow DM, Falk MM (2016) Feeding habits of 2 reef-associated fishes, red porgy (Pagrus pagrus) and gray triggerfish (Balistes capriscus), off the southeastern United States. US Fish Bullet 114(3):317–329. https://doi.org/10.7755/FB.114.3.5

    Article  Google Scholar 

  • Graham WM, Condon RH, Carmichael RH, D’Ambra I, Patterson HK, Linn LJ, Hernandez FJ Jr (2010) Oil carbon entered the coastal planktonic food web during the Deepwater Horizon oil spill. Environ Res Lett 5:045301. https://doi.org/10.1088/1748-9326/5/4/045301

    Article  CAS  Google Scholar 

  • Grimes CB (1979) Diet and feeding ecology of vermilion snapper, Rhomboplites aurorubens (Cuvier) from North Carolina and South Carolina waters. Bull Mar Sci 29(1):53–61

    Google Scholar 

  • Grottoli AG, Eakin CM (2007) A review of modern coral δ18O and Δ14C proxy records. Earth Sci Rev 81:67–91. https://doi.org/10.1016/j.earscirev.2006.10.001

    Article  Google Scholar 

  • Høie H, Folkvord A, Otterlei E (2003) Effect of somatic and otolith growth rate on stable isotopic composition of early juvenile cod (Gadus morhua L) otoliths. J Exp Mar Biol Ecol 289:41–58. https://doi.org/10.1016/S0022-0981(03)00034-0

    Article  Google Scholar 

  • Holmer M, Marba N, Diaz-Almela E, Duarte CM, Tsapakis M, Danovaro R (2007) Sedimentation of organic matter from fish farms in oligotrophic Mediterranean assessed through bulk and stable isotope (δ13C and δ15N) analyses. Aquaculture 262:268–280. https://doi.org/10.1016/j.aquaculture.2006.09.033

    Article  CAS  Google Scholar 

  • Huxam M, Kimani E, Newton J, Augley J (2007) Stable isotope records from otoliths as tracers of fish migration in a mangrove system. J Fish Biol 70:1554–1567. https://doi.org/10.1111/j.1095-8649.2007.01443.x

    Article  Google Scholar 

  • Jennings S, Greenstreet SPR, Hill L, Piet GJ, Pinnegar JK, Warr KJ (2002) Long-term trends in the trophic structure of the North Sea fish community: evidence from stable-isotope analysis, size-spectra and community metrics. Mar Biol 141:1085–1097. https://doi.org/10.1007/s00227-002-0905-7

    Article  Google Scholar 

  • Joye SB, Teske AP, Kostka JE (2014) Microbial dynamics following the Macondo oil well blowout across Gulf of Mexico environments. Bioscience 64:766. https://doi.org/10.1093/biosci/biu121

    Article  Google Scholar 

  • Kurz RC (1995) Predator-prey interactions between gray triggerfish (Balistes capriscus Gmelin) and a guild of sand dollars around artificial reefs in the northeastern Gulf of Mexico. Bull Mar Sci 56(1):150–160

    Google Scholar 

  • Leboulanger C, Descolas-Gros C, Fontugne MR, Bentaleb HJ (1995) Interspecific variability and environmental influence on particulate organic carbon δ13C in cultured marine phytoplankton. J Plankton Res 17(11):2079–2091

    Article  Google Scholar 

  • Lueders-Dumont JA, Wang XT, Jensen OP, Sigman DM, Ward BB (2018) Nitrogen isotopic analysis of carbonate-bound organic matter in modern and fossil fish otoliths. Geochim Cosmochim Acta 224:200–222. https://doi.org/10.1016/j.gca.2018.01.001

    Article  CAS  Google Scholar 

  • Manooch CS (1977) Foods of the red porgy, Pagrus pagrus Linnaeus (Pisces: Sparidae), from North Carolina and South Carolina. Bull Mar Sci 27(4):776–787

    Google Scholar 

  • McCann MJ, Able KW, Christian RR, Fodrie FJ, Jensen OP, Johnson JJ, Lopez-Duarte PC, Martin CW, Olin JA, Polito MJ, Roberts BJ, Ziegler SL (2017) Key taxa in food web responses to stressors: the Deepwater Horizon oil spill. Front Ecol Environ 15(3):142–149. https://doi.org/10.1002/fee.1474

    Article  Google Scholar 

  • McCawley JR, Cowan JH Jr, Shipp RL (2003) Red snapper (Lutjanus campechanus) diet in the north-central Gulf of Mexico on Alabama artificial reefs. Proc Gulf Caribb Fish Inst 54:372–385

    Google Scholar 

  • McCutchan JH Jr, Lewis WM Jr, Kendall C, McGrath CC (2003) Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102:378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x

    Article  CAS  Google Scholar 

  • McMahon KW, Fogel ML, Johnson BJ, Houghton LA, Thorrold SR (2011) A new method to reconstruct fish diet and movement patterns from δ13C values in otolith amino acids. Can J Fish Aquat Sci 68:1330–1340. https://doi.org/10.1139/F2011-070

    Article  CAS  Google Scholar 

  • Moncrieff CA, Sullivan MJ (2001) Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Mar Ecol Prog Ser 215:93–106

    Article  Google Scholar 

  • Nelson J, Chanton J, Coleman F, Koenig C (2011) Patterns of stable carbon isotope turnover in gag, Mycteroperca microlepis, an economically important marine piscivore determined with a non-lethal surgical biopsy procedure. Environ Biol Fish 90(3):243–252. https://doi.org/10.1007/s10641-010-9736-4

    Article  Google Scholar 

  • Norberg MA (2015) Effects of the Deepwater Horizon Oil Spill and habitat type on the ecology of tomtate, Haemulon aurolineatum, in the northern Gulf of Mexico. University of South Alabama, Mobile, 81 pp

    Google Scholar 

  • Olin JA, Bergeon Burns CM, Woltmann S, Taylor SS, Stouffer PC, Bam W, Hooper-Bui L, Turner RE (2018) Seaside Sparrows reveal contrasting food web responses to large-scale stressors in coastal Louisiana saltmarshes. Ecosphere 8(7):e01878. https://doi.org/10.1002/ecs2.1878

    Article  Google Scholar 

  • Patterson WF III (2007) A review of Gulf of Mexico red snapper movement studies: implications for population structure. Am Fish Soc Symp 60:221–236

    Google Scholar 

  • Peterson CH, Rice SD, Short JW, Esler D, Bodkin JL, Ballachey BE, Irons DB (2003) Long-term ecosystem response to the Exxon Valdez Oil Spill. Science 302:2082–2086. https://doi.org/10.1126/science.1084282

    Article  CAS  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montana CG (2007) Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152:179–189. https://doi.org/10.1007/s00442-006-0630-x

    Article  Google Scholar 

  • Radabaugh KR, Hollander DJ, Peebles EB (2013) Seasonal δ13C and δ15N isoscapes of fish populations along a continental shelf trophic gradient. Cont Shelf Res 68:112–122. https://doi.org/10.1016/j.csr.2013.08.010

    Article  Google Scholar 

  • Rooker JR, Turner JP, Holt SA (2006) Trophic ecology of Sargassum-associated fishes in the Gulf of Mexico determined from stable isotopes and fatty acids. Mar Ecol Prog Ser 313:249–259

    Article  CAS  Google Scholar 

  • Sedberry GR (1985) Food and feeding of the tomtate, Haemulon aurolineatum (Pisces, Haemulidae), in the South Atlantic Bight. US Fish Bullet 83(3):461–466

    Google Scholar 

  • Southeast Fishery Assessment and Review (SEDAR) (2018) SEDAR 52 stock assessment report Gulf of Mexico Red Snapper. South Atlantic Fishery Management Council, Charleston, South Carolina. 435 pp. http://sedarweb.org/sedar-52, Accessed 1 Oct 2018

  • Stuiver M, Pollach HA (1977) Discussions of reporting 14C data. Radiocarbon 19:355–363

    Article  Google Scholar 

  • Sweeting CJ, Barry J, Barnes C, Polunin NVC, Jennings S (2007) Effects of body size and environment on diet-tissue δ15N fractionation in fishes. J Exp Mar Biol Ecol 340:1–10. https://doi.org/10.1016/j.jembe.2006.07.023

    Article  CAS  Google Scholar 

  • Tarnecki JH, Patterson WF III (2015) Changes in red snapper, Lutjanus campechanus, diet and trophic ecology in the northern Gulf of Mexico following the Deepwater Horizon Oil Spill. Marine and Coastal Fisheries 7:135–147. https://doi.org/10.1080/19425120.2015.1020402

    Article  Google Scholar 

  • Tarnecki JH, Wallace A, Simons J, Ainsworth CH (2016) Progression of a Gulf of Mexico food web supporting Atlantis ecosystem model development. Fish Res 179:237–250. https://doi.org/10.1016/j.fishres.2016.02.023

    Article  Google Scholar 

  • Tohse H, Mugiya Y (2008) Sources of otolith carbonate: experimental determination of carbon incorporation rates from water and metabolic CO2, and their diel variations. Aquat Biol 1:259–268. https://doi.org/10.3354/ab00029

    Article  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182. https://doi.org/10.1007/s00442-003-1270-z

    Article  Google Scholar 

  • Vose FE, Nelson WG (1994) Gray triggerfish (Balistes capriscus Gmelin) feeding from artificial and natural substrate in shallow Atlantic waters of Florida. Bull Mar Sci 55(2–3):1316–1323

    Google Scholar 

  • Walker BD, Druffel ERM, Kolasinski J, Roberts BJ, Xu X, Rosenheim BE (2017) Stable and radiocarbon isotopic composition of dissolved organic matter in the Gulf of Mexico. Geophys Res Lett 44:8424–8434. https://doi.org/10.1002/2017GL074155

    Article  CAS  Google Scholar 

  • Wells RJD, Cowan JH Jr, Patterson WF III, Walters CJ (2008) Effect of trawling on juvenile red snapper (Lutjanus campechanus) habitat selection and life history parameters. Can J Fish Aquat Sci 65(11):2399–2411. https://doi.org/10.1139/F08-145

    Article  Google Scholar 

  • Wilson RM, Cherrier J, Sarkodee-Adoo, Bosman S, Mickle A, Chanton JP (2016) Tracing the intrusion of fossil carbon into coastal Louisiana macrofauna using natural 14C and 13C abundances. Deep Sea Res II 129:89–95. https://doi.org/10.1016/j.dsr2.2015.05.014

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Reef fish samples described herein were collected during cooperative research with for-hire recreational fishermen in the nGoM. We thank Captains Johnny Greene, Gary Jarvis, Sean Kelley, and Seth Wilson for their contributions, as well as numerous volunteers who helped procure samples. We thank Miaya Glabach and Samantha Bosman for processing samples for δ13C and Δ14C analysis and Sue Handwork, Kathy Elder, and Ann McNichol at WHOI-NOSAMS and Alexander Cherkinsky at UGA-CIAS for δ13C and Δ14C analysis.

Funding

In addition to the Gulf of Mexico Research Initiative (GoMRI) funding through the C-IMAGE consortium, this research was also made possible by grants from the Florida Institute of Oceanography, a grant from the Florida Department of Environmental Protection, and a grant from the Florida Fish and Wildlife Research Institute. All data presented herein are publicly available through the Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC): https://data.gulfresearchinitiative.org/data/Y1.x049.000:0007 and https://data.gulfresearchinitiative.org/data/R4.x267.180:0021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William F. Patterson III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Patterson III, W.F., Chanton, J.P., Hollander, D.J., Goddard, E.A., Barnett, B.K., Tarnecki, J.H. (2020). The Utility of Stable and Radioisotopes in Fish Tissues as Biogeochemical Tracers of Marine Oil Spill Food Web Effects. In: Murawski, S., et al. Scenarios and Responses to Future Deep Oil Spills. Springer, Cham. https://doi.org/10.1007/978-3-030-12963-7_13

Download citation

Publish with us

Policies and ethics