Advertisement

Introduction to the Volume

  • Steven A. MurawskiEmail author
  • Cameron H. Ainsworth
  • Sherryl Gilbert
  • David J. Hollander
  • Claire B. Paris
  • Michael Schlüter
  • Dana L. Wetzel
Chapter

Abstract

Ultra-deep water production of oil and gas – from depths greater than 1 mile (1500 m) – comprises an ever-increasing proportion of the world’s supply of hydrocarbons. In the Gulf of Mexico, ultra-deep production now exceeds that from shallower waters. The ultra-deep domains of the world’s oceans are home to unique and highly sensitive communities of animals, are characterized by extremes in environmental conditions (low temperatures, high pressures), and are exceedingly challenging regions in which to work safely. Deepwater Horizon (DWH) was the world’s first and largest ultra-deep water well blowout and likely not the last. In the wake of that incident, scientific research and industrial development have been focused to better understand the ultra-deep domain, to lessen the likelihood of accidents there, and to better respond to future incidents. This volume summarizes trends in the development of ultra-deep drilling, synthesizes the state of knowledge relevant to ultra-deep oil spill prevention and response, and contrasts the effects of simulated ultra-deep spills in the frontier regions of the Gulf and elsewhere. Recommendations for additional research and public policy changes to lessen the likelihood and impacts of future spills and to improve oil spill response are provided.

Keywords

Marine oil spills Ultra-deep Deepwater Horizon Ixtoc 1 Frontier oil and gas 

Notes

Acknowledgments

This research was made possible by a grant from the Gulf of Mexico Research Initiative/C-IMAGE I, II, and III.

References

  1. Armenteros M, Díaz-Asencio M, Martínez-Suárez A, Hollander DJ, Schwing PT, Larson RA, Gregg Brooks G (2020) Geochemical and faunal characterization in the sediments off the Cuban north and northwest coast (Chap. 9). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  2. Berenshtein I, Perlin N, Ainsworth C, Ortega-Ortiz J, Vaz AC, Paris CB (2020a) Comparison of the spatial extent, impacts to shorelines and ecosystem, and 4-dimensional characteristics of simulated oil Spills (Chap. 20). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  3. Berenshtein I, Perlin N, Murawski SA, Graber H, Samantha Joye S, Paris CB (2020b) Evaluating the effectiveness of fishery closures for deep oil spills using a 4-dimensional model (Chap. 23). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  4. Bevan E, Wibbels T, Najera BMZ, Sarti L, Martinez FI, Cuevas JM, Gallaway BJ, Pena LJ, Burchfield PM (2016) Estimating the historic size and current status of the Kemp’s ridley sea turtle (Lepidochelys kempii) population. Ecosphere 7:e01244.  https://doi.org/10.1002/ecs2.1244CrossRefGoogle Scholar
  5. Brooks GR, Larson RA, Schwing PT, Diercks AR, Armenteros-Almanza M, Diaz-Asencio M, Martinez-Suarez A, Sánchez-Cabeza JA, Ruiz-Fernandez A, Herguera-García JC, Perez-Bernal LH, Hollander DJ (2020) Gulf of Mexico (GoM) bottom sediments and depositional processes: A baseline for future oil spills (Chap. 5). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  6. Chancellor E, Murawski SA, Paris CB, Perruso L, Perlin N (2020) Comparative environmental sensitivity of offshore Gulf of Mexico waters potentially impacted by ultra-deep oil well blowouts (Chap. 26). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  7. Chanton JP, Jaggi A, Radović J, Rosenheim BE, Walker BD, Larter SR, Rogers K, Samantha Bosman S, Oldenburg TBP (2020) Mapping isotopic and dissolved organic matter baselines in waters and sediments of Gulf of Mexico (Chap. 10). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  8. Daly KL, Passow U, Chanton J, Hollander D (2016) Assessing the impacts of oil-associated marine snow formation during and after the Deepwater Horizon oil spill. Anthropocene 13:18–33. https://doi,org/10.1016/j.antecene,2016.01.006CrossRefGoogle Scholar
  9. Daly K, Vaz AC, Paris CB (2020) Physical processes influencing the sedimentation and lateral transport of MOSSFA in the NE Gulf of Mexico (Chap. 18). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  10. Exxon Valdez Oil Spill Trustees (EVOS) (2012) Regulations, politics, and oversight: a selected bibliography on the Exxon Valdez oil spill. http://www.evostc.state.ak.us/static/PDFs/biblio_regulations.pdf
  11. Fidler C, Noble B (2012) Advancing strategic environmental assessment in the offshore oil and gas sector: lessons from Norway, Canada, and the United Kingdom. Environ Impact Assess Rev 34:12–21.  https://doi.org/10.1016/j.eiar.2011.11.004CrossRefGoogle Scholar
  12. Foekema EM, van Eenennaam JS, Hollander DJ, Langenhoff AM, Oldenburg TBP, Radović J, Rohal M, Romero IC, Schwing PT, Murk AJ (2020) Testing the effect of MOSSFA (marine oil snow sedimentation and flocculent accumulation) events in benthic microcosms (Chap. 17). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  13. Frasier K (2020) Evaluating impacts of deep oil spills on oceanic marine mammals (Chap. 25). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  14. French-McCay D, Crowley D, Rowe JJ, Bock M, Robinson H, Wenning R, Hayward Walker A, Joeckel J, Nedwed TJ, Parkerton TF (2018) Comparative risk assessment of spill response options for a deepwater oil well blowout: Part 1. Oil spill modeling. Mar Pollut Bull 133:1001–1015CrossRefGoogle Scholar
  15. Gros J, Socolofsky SA, Dissanayake AL, Jun I, Zhao L, Boufadel MC, Reddy CM, Areya JS (2017) Petroleum dynamics in the sea and influence of subsea dispersant injection during Deepwater Horizon. Proc Natl Acad Sci USA 114:10065–10070CrossRefGoogle Scholar
  16. Haza C, D’Asaro E, Chang H, Chen S, Curcic M, Guigand C, Hultley HS, Jacobs G, Novelli G, Özgökmen TM, Poje AC, Ryan E, Shcherbina A (2018) Drogue-loss detection for surface drifters during the Lagrangian Submesoscale experiment (LASER). J Atmos Ocean Technol 35:705–725CrossRefGoogle Scholar
  17. Interagency Coordinating Committee on Oil Pollution Research (ICCOPR) (2015) Oil pollution research and technology plan: fiscal years 2015–2021, 270 pp. https://www.bsee.gov/sites/bsee_prod.opengov.ibmcloud.com/files/bsee-interim-document/statistics/2015-iccopr-research-and-technology-plan.pdf
  18. Jasanoff S (ed) (1994) Learning from disaster: risk management after Bhopal. University of Pennsylvania Press, Philadelphia, 291 ppGoogle Scholar
  19. Jensen JR, Halls JN, Michel J (1998) Systems approach to environmental sensitivity index (ESI) mapping for oil spill contingency planning and response. Photogramm Eng Remote Sens 64:1003–1013Google Scholar
  20. Jin C, Castais G (2016) New frontiers in oil and gas exploration. Springer, Switzerland, 521 pp.  https://doi.org/10.1007/978-3-319-40124-9CrossRefGoogle Scholar
  21. Kleindienst S, Seidel M, Ziervogel K, Grim S, Loftis K, Harrison S, Malkin SY, Perkins MJ, Field J, Sogin ML, Dittmar T, Passow U, Medeiros PM, Joye SB (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci USA 112:14900–14905CrossRefGoogle Scholar
  22. Kostka JE, Overholt WA, Rodriguez-R LM, Huettel M, Konstantinidis K (2020) Toward a predictive understanding of the benthic microbial community response to oiling on the northern Gulf of Mexico coast (Chap. 11). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  23. Locker S, Hine AC (2020) An overview of the geologic origins of hydrocarbons and production trends in the Gulf of Mexico (Chap. 4). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  24. Lubchenco J, McNutt MK, Dreyfus G, Murawski SA, Kennedy DM, Anastas PT, Chu S, Hunter T (2012) Science in support of the Deepwater Horizon response. Proceedings of the National Academy of Sciences 109(50):20212–20221CrossRefGoogle Scholar
  25. MacDonald IR, Gaytan-Caballero A, Escobar-Briones E (2020) The asphalt ecosystem of the southern Gulf of Mexico: abyssal habitats across space and time (Chap. 8). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  26. Mitchelmore CL, Griffitt RJ, Coelho GM, Wetzel DL (2020) Modernizing protocols for aquatic toxicity testing of oil and dispersant (Chap. 14). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  27. Montagna PA, Baguley J, Rowe GT, Wade T (2020) Linking abiotic variables with macrofaunal and meiofaunal abundance and community structure patterns on the Gulf of Mexico continental slope (Chap. 7). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  28. Murawski SA (2020) Perspectives on research, technology, policy and human resources for improved management of ultra-deep oil and gas resources and responses to oil spills (Chap. 29). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  29. Murawski SA, Hollander DJ, Gilbert S, Gracia A (2020a) Deep-water oil and gas production in the Gulf of Mexico, and related global trends (Chap. 2). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  30. Murawski SA, Schlüter M, Paris CB, Aman ZM (2020b) Summary of contemporary research on use of chemical dispersants for deep sea oil spills (Chap. 28). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  31. Murk AJ, Hollander DJ, Chen S, Chuanmin H, Liu Y, Vonk SM, Schwing PT, Gilbert S, Foekema EM (2020) A predictive strategy for mapping locations where future MOSSFA events are expected (Chap. 21). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  32. National Academies of Sciences, Engineering and Medicine (NASEM) (2019) Report of the committee on evaluation of the use of chemical dispersants in oil spill response. National Academies Press, Washington, DCGoogle Scholar
  33. Nelson JR, Grubesic TH (2018) The implications of oil exploration off the Gulf coast of Florida. J Mar Sci Eng 6.  https://doi.org/10.3390/jmse6020030CrossRefGoogle Scholar
  34. Noble B, Ketilson S, Aitken A, Poelzer G (2013) Strategic environmental assessment opportunities and risks for Arctic offshore energy planning and development. Mar Policy 39:296–302.  https://doi.org/10.1016/j.marpol.2012.12.011CrossRefGoogle Scholar
  35. Paris CB, Helgers J, van Sebille E, Srinivasan A (2013) Connectivity modeling system: a probabilistic modeling tool for the multi-scale tracking of biotic and abiotic variability in the ocean. Environ Model Softw 42:47–54CrossRefGoogle Scholar
  36. Paris CB, Berenshtein I, Trillo ML, Faillettaz R, Olascoaga MJ, Aman ZM, Schlüter M, Joye SB (2018) BP gulf science data reveals ineffectual subsea dispersant injection for the Macondo blowout. Front Mar Sci 5:389.  https://doi.org/10.3389/fmars.2018.00389CrossRefGoogle Scholar
  37. Paris CB, Vaz AC, Berenshtein I, Perlin N, Faillettaz R, Aman ZM, Murawski SA (2020a) Simulating deep oil spills beyond the Gulf of Mexico (Chap. 19). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  38. Paris CB, Murawski SA, Olascoaga MJ, Vaz AC, Berenshtein I, Beron-Vera FJ, Miron P, Faillettaz R (2020b) Connectivity of Gulf of Mexico continental shelf fish populations and implications of simulated oil spills (Chap. 22). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  39. Patterson WF III, Chanton JP, Barnett B, Tarnecki JH (2020) The utility of stable and radio isotopes in fish tissues as biogeochemical tracers of marine oil spill food web effects (Chap. 13). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  40. Peebles EB, Hollander DJ (2020) Combining isoscapes with tissue-specific isotope records to re-create the geographic histories of fish (Chap. 12). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  41. Pinder D (2001) Offshore oil and gas: global resource knowledge and technological change. Ocean Coast Manag 44:579–600.  https://doi.org/10.1016/S0964-5691(01)00070-9CrossRefGoogle Scholar
  42. Prince RC, Coolbaugh TS, Parkerton TF (2016) Oil dispersants do facilitate biodegradation of spilled oil. Proc Natl Acad Sci USA 113:E1421.  https://doi.org/10.1073/pnas.1525333113CrossRefGoogle Scholar
  43. Pulster EL, Gracia A, Snyder SM, Romero IC, Carr B, Toro-Farmer G, Murawski SA (2020) Polycyclic aromatic hydrocarbon baselines in Gulf of Mexico fishes (Chap. 15). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  44. Raimondo S, Awkerman JA, Yee S, Barron MG (2020) Case Study: using a combined laboratory, field, and modeling approach to assess oil spill impacts (Chap. 16). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  45. Ramseur JL (2010) Oil spills in U.S. coastal waters: background, governance, and issues for congress. Congressional research service 7-5700, RL33705, 34 ppGoogle Scholar
  46. Revkin AC (2013) Love Canal and its mixed legacy. New York Times, November 25, 2013. https://www.nytimes.com/2013/11/25/booming/love-canal-and-its-mixed-legacy.html
  47. Romero IC, Sutton T, Carr B, Quintana-Rizzo E, Ross SW, Hollander DJ, Torres JJ (2018) Decadal assessment of polycyclic aromatic hydrocarbons in mesopelagic fishes from the Gulf of Mexico reveals exposure to oil-derived sources. Environ Sci Technol (online).  https://doi.org/10.1021/acs.est.8b02243CrossRefGoogle Scholar
  48. Santschi PH, Presley BJ, Wade TL, Garcia-Romero B, Baskaran M (2001) Historical contamination of PAHs, PCBs, DDTs, and heavy metals in Mississippi River Delta, Galveston Bay and Tampa Bay sediment cores. Mar Environ Res 52:51–79CrossRefGoogle Scholar
  49. Schwing PT, Montagna PA, Machain-Castillo ML, Escobar-Briones E, Rohal M (2020) Benthic faunal baselines in the Gulf of Mexico: a precursor to evaluate future impacts (Chap. 6). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  50. Sheail J (2007) Torrey Canyon: the political dimension. J Contemp Hist 42:485–504CrossRefGoogle Scholar
  51. Slav I (2017) Cuba eager to develop offshore oil reserves. Oilprice.Com. Published online: https://oilprice.com/Latest-Energy-News/World-News/Cuba-Eager-to-Develop-Offshore-Oil-Reserves.html
  52. Soto LA, Botello AV, Licea-Durán S, Lizárraga-Partida M, Yáñez-Arancibia A (2014) The environmental legacy of the Ixtoc 1 oil spill in Campeche sound, southwestern Gulf of Mexico. Front Mar Sci 1:1–9CrossRefGoogle Scholar
  53. Sturges W, Lugo-Fernandez A (eds) (2005) Circulation in the Gulf of Mexico: observations and models. American Geophysical Union, Geophysical Monograph 161, 347 ppGoogle Scholar
  54. Sun S, Hu C, Tunnell JW Jr (2015) Surface oil footprint and trajectory of the Ixtoc-I oil spill determined from Landsat/MSS and CZCS observations. Mar Pollut Bull 101:632–641.  https://doi.org/10.1016/j.marpolbul.2015.10.036CrossRefGoogle Scholar
  55. Suprenand PM, Hoover C, Ainsworth CH, Dornberger L, Johnson CJ (2020) Preparing for the inevitable: ecological and indigenous community impacts of oil spill-related mortality in the United States Arctic marine ecosystem (Chap. 27). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  56. Sutton T, Frank T, Judkins H, Romero IC (2020) As Gulf oil extraction goes deeper, who is at risk? Community structure, distribution, and connectivity of the deep-pelagic fauna (Chap. 24). In: Murawski SA, Ainsworth C, Gilbert S, Hollander D, Paris CB, Schlüter M, Wetzel D (eds) Scenarios and responses to future deep oil spills – fighting the next war. Springer, ChamGoogle Scholar
  57. U.S. Bureau of Ocean Energy Management (BOEM) (2017) Assessment of technically and economically recoverable hydrocarbon resources of the Gulf of Mexico Outer Continental Shelf as of January 1, 2014. OCS Report BOEM 2017-005, 44 pp. https://www.boem.gov/BOEM-2017-005/
  58. Weisberg RH, Liu Y (2017) On the loop current penetration into the Gulf of Mexico. J Geophys Res Oceans 122:9679–9694.  https://doi.org/10.1002/2017JC013330CrossRefGoogle Scholar
  59. Wilson CV (1973) The impact of the Torrey Canyon disaster on technology and national and international efforts to deal with supertanker generated oil pollution: an impetus for change? M.A. Thesis, University of Montana. Graduate student theses, dissertations, & professional papers 8988. https://scholarworks.umt.edu/etd/8988?utm_source=scholarworks.umt.edu%2Fetd%2F8988&utm_medium=PDF&utm_campaign=PDFCoverPages
  60. Wood Group Kenny (2016) Subsea capping stack technology requirements. Final report prepared for the Bureau of Safety and Environmental Enforcement, 188 pp. https://www.bsee.gov/sites/bsee.gov/files/research-reports//756aa.pdf

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Steven A. Murawski
    • 1
    Email author
  • Cameron H. Ainsworth
    • 1
  • Sherryl Gilbert
    • 1
  • David J. Hollander
    • 1
  • Claire B. Paris
    • 2
  • Michael Schlüter
    • 3
  • Dana L. Wetzel
    • 4
  1. 1.University of South Florida, College of Marine ScienceSt. PetersburgUSA
  2. 2.University of Miami, Department of Ocean Sciences, Rosenstiel School of Marine & Atmospheric ScienceMiamiUSA
  3. 3.Hamburg University of TechnologyHamburgGermany
  4. 4.Mote Marine LaboratorySarasotaUSA

Personalised recommendations