Skip to main content

Fusion of the Infrared Imaging and the Ultrasound Techniques to Enhance the Sub-surface Characterization

  • Conference paper
  • First Online:
  • 1431 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 962))

Abstract

In this paper, the techniques of high-frequency ultrasound and infrared imaging are combined to enhance the sub-surface characterization of cultural heritage artworks. Initially, these two different modalities are studied independently focusing on the extraction of an art object’s stratigraphy through acoustic microscopy and the distinction of materials, such as pigments, via their infrared fingerprint. Moreover, post-processing procedures are utilized separately for each technique to maximize the information of the acquired data. Then, robust registration methods are presented and applied on the images in order to align them spatially facilitating their fusion. Finally, the entire process is summarized in a block diagram and the fused images are presented, revealing the enhanced perspective of the artwork’s sub-surface details.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Karagiannis, G., et al.: Three-dimensional nondestructive “sampling” of art objects using acoustic microscopy and time-frequency analysis. IEEE Trans. Instrum. Meas. 60(9), 3082–3109 (2011)

    Article  Google Scholar 

  2. Targowski, P., Iwanicka, M.: Optical coherence tomography: its role in the non-invasive structural examination and conservation of cultural heritage objects—a review. Appl. Phys. A 106(2), 265–277 (2012)

    Article  Google Scholar 

  3. Zielińska, A., et al.: X-ray fluorescence imaging system for fast mapping of pigment distributions in cultural heritage paintings. J. Instrum. 8(10), P10011 (2013)

    Article  Google Scholar 

  4. Sarmiento, A., et al.: Classification and identification of organic binding media in artworks by means of Fourier transform infrared spectroscopy and principal component analysis. Anal. Bioanal. Chem. 399(10), 3601–3611 (2011)

    Article  Google Scholar 

  5. Attas, M., et al.: Near-infrared spectroscopic imaging in art conservation: investigation of drawing constituents. J. Cult. Heritage 4(2), 127–136 (2003)

    Article  Google Scholar 

  6. Fukunaga, K., Hosako, I.: Innovative non-invasive analysis techniques for cultural heritage using terahertz technology. C.R. Phys. 11(7–8), 519–526 (2010)

    Article  Google Scholar 

  7. Filippidis, G., et al.: Nonlinear imaging and THz diagnostic tools in the service of Cultural Heritage. Appl. Phys. A 106(2), 257–263 (2012)

    Article  Google Scholar 

  8. Briggs, A.: Advances in Acoustic Microscopy, vol. 1. Springer, New York (2013)

    Google Scholar 

  9. Rose, J.L.: Ultrasonic Guided Waves in Solid Media. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  10. Cheeke, J., David, N.: Fundamentals and Applications of Ultrasonic Waves. CRC Press, Boca Raton (2012)

    Book  Google Scholar 

  11. Yu, Z., Boseck, S.: Scanning acoustic microscopy and its applications to material characterization. Rev. Mod. Phys. 67(4), 863 (1995)

    Article  Google Scholar 

  12. Karagiannis, G., et al.: Processing of UV/VIS/nIR/mIR diffuse reflectance spectra and acoustic microscopy echo graphs for stratigraphy determination, using neural networks and wavelet transform. In: IEEE ICTTA, pp. 1–7 (2008)

    Google Scholar 

  13. Griffiths, P.R., De Haseth, J.A.: Fourier Transform Infrared Spectrometry, vol. 171. Wiley, Hoboken (2007)

    Book  Google Scholar 

  14. Hariharan, P.: Basics of Interferometry. Academic Press, San Diego (2010)

    Google Scholar 

  15. Brown, L.G.: A survey of image registration techniques. ACM Comput. Surv. (CSUR) 24(4), 325–376 (1992)

    Article  Google Scholar 

  16. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

  17. Barnea, D.I., Silverman, H.F.: A class of algorithms for fast digital image registration. IEEE Trans. Comput. 21, 179–186 (1972)

    Article  Google Scholar 

  18. Althof, R.J., Wind, M.G.J., Dobbins, J.T.: A rapid and automatic image registration algorithm with subpixel accuracy. IEEE Trans. Med. Imaging 16, 308–316 (1997)

    Article  Google Scholar 

  19. Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)

    Google Scholar 

  20. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  21. Rockinger, O.: Image sequence fusion using a shift-invariant wavelet transform. In: IEEE International Conference on Image Processing 1997, vol. 3, pp. 288–291 (1997)

    Google Scholar 

  22. Nikolov, S., Hill, P., Bull, D., Canagarajah, N.: Wavelets for image fusion. In: Petrosian, A.A., Meyer, F.G. (eds.) Wavelets in Signal and Image Analysis. Computational Imaging and Vision, vol. 19, pp. 213–241. Springer, Dordrecht (2001). https://doi.org/10.1007/978-94-015-9715-9_8

    Chapter  Google Scholar 

  23. Liu, K., Guo, L., Chen, J.: Contourlet transform for image fusion using cycle spinning. BIAI J. Syst. Eng. Electron. 22(2), 353–357 (2011)

    Article  Google Scholar 

  24. Xiao-Bo, Q., Jing-Wen, Y., Hong-Zhi, X., Zi-Qian, Z.: Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain. Acta Automatica Sinica 34(12), 1508–1514 (2008)

    Article  Google Scholar 

  25. Pohl, C., Van Genderen, J.L.: Review article multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19(15), 823–854 (1998)

    Article  Google Scholar 

  26. Xydeas, C.S., Petrovic, V.: Objective image fusion performance measure. IEEE Electron. Lett. 36(4), 308–309 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This work is part of Scan4Reco project that has received funding from the European Union Horizon 2020 Framework Programme for Research and Innovation under grant agreement no 665091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stamatios Amanatiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amanatiadis, S., Apostolidis, G., Karagiannis, G. (2019). Fusion of the Infrared Imaging and the Ultrasound Techniques to Enhance the Sub-surface Characterization. In: Moropoulou, A., Korres, M., Georgopoulos, A., Spyrakos, C., Mouzakis, C. (eds) Transdisciplinary Multispectral Modeling and Cooperation for the Preservation of Cultural Heritage. TMM_CH 2018. Communications in Computer and Information Science, vol 962. Springer, Cham. https://doi.org/10.1007/978-3-030-12960-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12960-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12959-0

  • Online ISBN: 978-3-030-12960-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics