Advertisement

Climate Information for the Preservation of Cultural Heritage: Needs and Challenges

  • Lola KotovaEmail author
  • Daniela Jacob
  • Johanna Leissner
  • Moritz Mathis
  • Uwe Mikolajewicz
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 961)

Abstract

Continued preservation of cultural heritage requires reliable climate information as input for an accurate projection of possible impacts of climate change. Future climate-induced outdoor risks for cultural heritage can in general be estimated from the information provided by Earth System Models (ESMs). In this paper we present the results of the project Climate for Culture. The project focused on damage risk assessment, economic impact and mitigation strategies for sustainable preservation of cultural heritage in times of anthropogenic climate change. We utilized advanced climate modelling techniques with dynamical downscaling and novel analysis methodology allowing better integration of climate information to impact studies on cultural heritage. Challenges of bridging supply and demand of climate information relevant for adaptation measures for the preservation of cultural heritage are also addressed.

Keywords

Climate change Climate modelling Sea level rise Cultural heritage 

References

  1. 1.
    Collins, M., et al.: Long-term climate change: projections, commitments and irreversibility. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., et al. (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge (2013)Google Scholar
  2. 2.
    Sabbioni, C., Brimblecombe, P., Cassar, M. (eds.): Atlas of Climate Change Impact on European Cultural Heritage. Scientific Analysis and Managements Strategies, The Anthem-European Union Series,160 p. (2010). ISBN 9781843313953Google Scholar
  3. 3.
    Leissner, J., et al.: Climate for culture: assessing the impact of climate change on the future indoor climate in historic buildings using simulations. Herit. Sci. 3, 38 (2015).  https://doi.org/10.1186/s40494-015-0067-9CrossRefGoogle Scholar
  4. 4.
    Jacob, D., Petersen, J., Eggert, B., Haensler, A., et al.: EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg. Environ. Change 14, 563 (2014).  https://doi.org/10.1007/s10113-013-0499-2CrossRefGoogle Scholar
  5. 5.
    van der Linden, P., Mitchell, J.F.B. (eds.): EMSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from EMSEMBLES Project. Met Office Hadley Center, Exeter (2009)Google Scholar
  6. 6.
    Nakićenović, N., et al.: Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2000)Google Scholar
  7. 7.
    Taylor, K., Stouffer, R.J., Meehl, G.A.: An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).  https://doi.org/10.1175/BAMS-D-11-0094.1CrossRefGoogle Scholar
  8. 8.
    van Vuuren, D.P., et al.: Representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).  https://doi.org/10.1007/s10584-011-0148-zCrossRefGoogle Scholar
  9. 9.
    Kotova, L., Mikolajewicz, U., Jacob, D.: Climate modelling. In: Leissner, J., Kaiser, U., Kilian, R. (eds.) Climate for Culture. Fraunhofer-Center for Central and Eastern Europe MoEZ (2014). ISBN 978-3-00-048328-8Google Scholar
  10. 10.
    von Storch, H., Zwiers, F.: Testing ensembles of climate change scenarios for “statistical significance”. Clim. Change 117(1–2), 1–9 (2013)CrossRefGoogle Scholar
  11. 11.
    Roeckner, E., et al.: The atmospheric general circulation model ECHAM 5. PART I: model description. MPI-Report no. 349 (2003)Google Scholar
  12. 12.
    Giorgetta, M.A., et al.: Climate and carbon-cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparision project phase 5. J. Adv. Model Earth Syst. 5(3), 572–597 (2013)CrossRefGoogle Scholar
  13. 13.
    Mathis, M., Elizalde, A., Mikolajewicz, U.: The future regime of Atlantic nutrient supply to the Northwest European shelf. J. Mar. Syst. 189, 98–115 (2019)CrossRefGoogle Scholar
  14. 14.
    Church, J.A., et al.: Sea level change. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., et al. (Eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge (2013)Google Scholar
  15. 15.
    Bertolin, C., et al.: Results of the EU project climate for culture: future climate-induced risks to historic buildings and their interiors. In: Proceedings of the Second Annual Conference (SICS) on Climate Change Scenarios, Impacts and Policy, Venice, 29–30 September (2014)Google Scholar
  16. 16.
    Leissner, J., Kaiser, U., Kilian, R. (eds.): Climate for Culture. Fraunhofer-Center for Central and Eastern Europe MoEZ (2014). ISBN 978-3-00-048328-8Google Scholar
  17. 17.
    A European Research and Innovation Roadmap for Climate Services, European Commission, Directorate-General for Research and Innovation, European Union (2015).  https://doi.org/10.2777/702151. ISBN 978-92-79-44341-1

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Climate Service Center Germany (GERICS), Helmholtz-Zentrum GeesthachtHamburgGermany
  2. 2.Fraunhofer Gesellschaft zur Foerderung der angewandten Forschung eVMunichGermany
  3. 3.Max Planck Institute for MeteorologyHamburgGermany

Personalised recommendations