Skip to main content

Robust Perception for Aerial Inspection: Adaptive and On-Line Techniques

  • 924 Accesses

Part of the Springer Tracts in Advanced Robotics book series (STAR,volume 129)

Abstract

This chapter explains an adaptive on-line object detection and classification technique for robust perception due to varying scene conditions, for example partial cast shadows, change on the illumination conditions or changes in the angle of the object target view. This approach continuously updates the target model upon arrival of new data, being able to adapt to dynamic situations. The method uses an on-line learning technique that works on real-time and it is continuously updated in order to adapt to potential changes undergone by the target object. The method can run in real-time.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kim, J., Shim, D.H.: A vision-based target tracking control system of a quadrotor by using a tablet computer. 1165–1172 (2013)

    Google Scholar 

  2. Masselli, A., Yang, S., Wenzel, K.E., Zell, A.: A cross-platform comparison of visual marker based approaches for autonomous flight of quadrocopters. 685–693 (2013)

    Google Scholar 

  3. Mondragon, I.F., Campoy, P., Correa, J.F., Mejias, L.: Visual model feature tracking for uav control. 1–6 (2007)

    Google Scholar 

  4. Flores, G., Zhou, S., Lozano, R., Castillo, P.: A vision and gps-based real-time trajectory planning for mav in unknown urban environments. 1150–1155 (2013)

    Google Scholar 

  5. Yang, S., Scherer, S.A., Zell, A.: An onboard monocular vision system for autonomous takeoff, hovering and landing of a micro aerial vehicle. 69(1–4), 499–515 (2013)

    Google Scholar 

  6. Fan, Y., Haiqing, S., Hong, W.: A vision-based algorithm for landing unmanned aerial vehicles. 993–996 (2008)

    Google Scholar 

  7. Sanchez-Lopez, J.L., Saripalli, S., Campoy, P., Pestana, J., Fu, C.: Toward visual autonomous ship board landing of a vtol uav. 779–788 (2013)

    Google Scholar 

  8. Villamizar, M., Sanfeliu, A., Moreno-Noguer, F.: Fast online learning and detection of natural landmarks for autonomous aerial robots. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pp. 4996–5003 (2014)

    Google Scholar 

  9. Lepetit, V., Fua, P.: Keypoint recognition using randomized trees. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1465–1479 (2006)

    CrossRef  Google Scholar 

  10. Moreno-Noguer, F., Lepetit, V., Fua, P.: Pose priors for simultaneously solving alignment and correspondence. In: Proceedings of the IEEE European Conference on Computer Vision (ECCV), vol. 2, pp. 405–418 (2008)

    Google Scholar 

  11. Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 448–461 (2010)

    CrossRef  Google Scholar 

  12. Villamizar, M., Andrade-Cetto, J., Sanfeliu, A., Moreno-Noguer, F.: Boosted random ferns for object detection. IEEE Trans. Pattern Anal. Mach. Intell. (2017)

    Google Scholar 

  13. Criminisi, A., Shotton, J., Konukoglu, E.: Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. FTCGV 7(2–3), 81–227 (2011)

    MATH  Google Scholar 

  14. Kalal, Z., Matas, J., Mikolajczyk, K.: P-N learning: Bootstrapping binary classifiers by structural constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 49–56 (2010)

    Google Scholar 

  15. Villamizar, M., Garrell, A., Sanfeliu, A., Moreno-Noguer, F.: Online human-assisted learning using random ferns. In: Proceedings International Conference on Pattern Recognition (ICPR), pp. 2821–2824 (2012)

    Google Scholar 

  16. Breiman, L.: Random forests. ML 45(1), 5–32 (2001)

    MATH  Google Scholar 

  17. Shotton, J., Johnson, M., Cipolla, R.: Semantic texton forests for image categorization and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)

    Google Scholar 

  18. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Villamizar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Villamizar, M., Sanfeliu, A. (2019). Robust Perception for Aerial Inspection: Adaptive and On-Line Techniques. In: Ollero, A., Siciliano, B. (eds) Aerial Robotic Manipulation. Springer Tracts in Advanced Robotics, vol 129. Springer, Cham. https://doi.org/10.1007/978-3-030-12945-3_19

Download citation