Skip to main content

Deriving Neural Network Architectures Using Precision Learning: Parallel-to-Fan Beam Conversion

  • Conference paper
  • First Online:
Pattern Recognition (GCPR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11269))

Included in the following conference series:

Abstract

In this paper, we derive a neural network architecture based on an analytical formulation of the parallel-to-fan beam conversion problem following the concept of precision learning. The network allows to learn the unknown operators in this conversion in a data-driven manner avoiding interpolation and potential loss of resolution. Integration of known operators results in a small number of trainable parameters that can be estimated from synthetic data only. The concept is evaluated in the context of Hybrid MRI/X-ray imaging where transformation of the parallel-beam MRI projections to fan-beam X-ray projections is required. The proposed method is compared to a traditional rebinning method. The results demonstrate that the proposed method is superior to ray-by-ray interpolation and is able to deliver sharper images using the same amount of parallel-beam input projections which is crucial for interventional applications. We believe that this approach forms a basis for further work uniting deep learning, signal processing, physics, and traditional pattern recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  2. Christlein, V., et al.: Tutorial: deep learning advancing the state-of-the-art in medical image analysis. In: Maier-Hein, K.H., et al. (eds.) Bildverarbeitung für die Medizin 2017. I, pp. 6–7. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54345-0_6

    Chapter  Google Scholar 

  3. Fu, W., et al.: Frangi-Net: a neural network approach to vessel segmentation. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2018, pp. 341–346 (2018)

    Google Scholar 

  4. Huang, Y., Würfl, T., Breininger, K., Liu, L., Lauritsch, G., Maier, A.: Some investigations on robustness of deep learning in limited angle tomography. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 145–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_17

    Chapter  Google Scholar 

  5. Lommen, J., et al.: MR-projection imaging for interventional X/MR-hybrid applications. In: Proceedings of the 49th Annual Meeting of the German Society for Medical Physics (2018)

    Google Scholar 

  6. Maier, A.K., et al.: Precision learning: towards use of known operators in neural networks. CoRR abs/1712.00374 (2017). http://arxiv.org/abs/1712.00374

  7. Ramachandran, G., Lakshminarayanan, A.: Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of fourier transforms. Proc. Nat. Acad. Sci. 68(9), 2236–2240 (1971)

    Article  MathSciNet  Google Scholar 

  8. Fahrig, R., et al.: A truly hybrid interventional MR/X-ray system: feasibility demonstration. J. Magn. Reson. Imaging 13(2), 294–300 (2001). https://doi.org/10.1002/1522-2586(200102)13:2\(<\)294::AID-JMRI1042\(>\)3.0.CO;2-X

    Article  Google Scholar 

  9. Shepp, L.A., Logan, B.F.: The fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21(3), 21–43 (1974)

    Article  Google Scholar 

  10. Syben, C., et al.: Precision learning: reconstruction filter kernel discretization. In: Noo, F. (ed.) Proceedings of the Fifth International Conference on Image Formation in X-Ray Computed Tomography, pp. 386–390 (2018)

    Google Scholar 

  11. Syben, C., Stimpel, B., Leghissa, M., Dörfler, A., Maier, A.: Fan-beam projection image acquisition using MRI. In: Skalej, M., Hoeschen, C. (eds.) 3rd Conference on Image-Guided Interventions & Fokus Neuroradiologie, pp. 14–15 (2017)

    Google Scholar 

  12. Wachowicz, K., Murray, B., Fallone, B.: On the direct acquisition of beam’s-eye-view images in MRI for integration with external beam radiotherapy. Phys. Med. Biol. 63(12), 125002 (2018)

    Article  Google Scholar 

  13. Wang, G., et al.: Vision 20/20: simultaneous CT-MRI - next chapter of multimodality imaging. Med. Phys. 42, 5879–5889 (2015). https://doi.org/10.1118/1.4929559

    Article  Google Scholar 

  14. Würfl, T., Ghesu, F.C., Christlein, V., Maier, A.: Deep learning computed tomography. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 432–440. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_50

    Chapter  Google Scholar 

  15. Würfl, T., et al.: Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans. Med. Imaging 37(6), 1454–1463 (2018). https://doi.org/10.1109/TMI.2018.2833499

    Article  Google Scholar 

  16. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487 (2018)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the project P3-Stroke, an EIT Health innovation project. EIT Health is supported by EIT, a body of the European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Syben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Syben, C., Stimpel, B., Lommen, J., Würfl, T., Dörfler, A., Maier, A. (2019). Deriving Neural Network Architectures Using Precision Learning: Parallel-to-Fan Beam Conversion. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12939-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12938-5

  • Online ISBN: 978-3-030-12939-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics