Abstract
In this paper, we derive a neural network architecture based on an analytical formulation of the parallel-to-fan beam conversion problem following the concept of precision learning. The network allows to learn the unknown operators in this conversion in a data-driven manner avoiding interpolation and potential loss of resolution. Integration of known operators results in a small number of trainable parameters that can be estimated from synthetic data only. The concept is evaluated in the context of Hybrid MRI/X-ray imaging where transformation of the parallel-beam MRI projections to fan-beam X-ray projections is required. The proposed method is compared to a traditional rebinning method. The results demonstrate that the proposed method is superior to ray-by-ray interpolation and is able to deliver sharper images using the same amount of parallel-beam input projections which is crucial for interventional applications. We believe that this approach forms a basis for further work uniting deep learning, signal processing, physics, and traditional pattern recognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)
Christlein, V., et al.: Tutorial: deep learning advancing the state-of-the-art in medical image analysis. In: Maier-Hein, K.H., et al. (eds.) Bildverarbeitung für die Medizin 2017. I, pp. 6–7. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54345-0_6
Fu, W., et al.: Frangi-Net: a neural network approach to vessel segmentation. In: Maier, A., Deserno, T., Handels, H., Maier-Hein, K., Palm, C., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2018, pp. 341–346 (2018)
Huang, Y., Würfl, T., Breininger, K., Liu, L., Lauritsch, G., Maier, A.: Some investigations on robustness of deep learning in limited angle tomography. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 145–153. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_17
Lommen, J., et al.: MR-projection imaging for interventional X/MR-hybrid applications. In: Proceedings of the 49th Annual Meeting of the German Society for Medical Physics (2018)
Maier, A.K., et al.: Precision learning: towards use of known operators in neural networks. CoRR abs/1712.00374 (2017). http://arxiv.org/abs/1712.00374
Ramachandran, G., Lakshminarayanan, A.: Three-dimensional reconstruction from radiographs and electron micrographs: application of convolutions instead of fourier transforms. Proc. Nat. Acad. Sci. 68(9), 2236–2240 (1971)
Fahrig, R., et al.: A truly hybrid interventional MR/X-ray system: feasibility demonstration. J. Magn. Reson. Imaging 13(2), 294–300 (2001). https://doi.org/10.1002/1522-2586(200102)13:2\(<\)294::AID-JMRI1042\(>\)3.0.CO;2-X
Shepp, L.A., Logan, B.F.: The fourier reconstruction of a head section. IEEE Trans. Nucl. Sci. 21(3), 21–43 (1974)
Syben, C., et al.: Precision learning: reconstruction filter kernel discretization. In: Noo, F. (ed.) Proceedings of the Fifth International Conference on Image Formation in X-Ray Computed Tomography, pp. 386–390 (2018)
Syben, C., Stimpel, B., Leghissa, M., Dörfler, A., Maier, A.: Fan-beam projection image acquisition using MRI. In: Skalej, M., Hoeschen, C. (eds.) 3rd Conference on Image-Guided Interventions & Fokus Neuroradiologie, pp. 14–15 (2017)
Wachowicz, K., Murray, B., Fallone, B.: On the direct acquisition of beam’s-eye-view images in MRI for integration with external beam radiotherapy. Phys. Med. Biol. 63(12), 125002 (2018)
Wang, G., et al.: Vision 20/20: simultaneous CT-MRI - next chapter of multimodality imaging. Med. Phys. 42, 5879–5889 (2015). https://doi.org/10.1118/1.4929559
Würfl, T., Ghesu, F.C., Christlein, V., Maier, A.: Deep learning computed tomography. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 432–440. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_50
Würfl, T., et al.: Deep learning computed tomography: learning projection-domain weights from image domain in limited angle problems. IEEE Trans. Med. Imaging 37(6), 1454–1463 (2018). https://doi.org/10.1109/TMI.2018.2833499
Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487 (2018)
Acknowledgement
This work has been supported by the project P3-Stroke, an EIT Health innovation project. EIT Health is supported by EIT, a body of the European Union.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Syben, C., Stimpel, B., Lommen, J., Würfl, T., Dörfler, A., Maier, A. (2019). Deriving Neural Network Architectures Using Precision Learning: Parallel-to-Fan Beam Conversion. In: Brox, T., Bruhn, A., Fritz, M. (eds) Pattern Recognition. GCPR 2018. Lecture Notes in Computer Science(), vol 11269. Springer, Cham. https://doi.org/10.1007/978-3-030-12939-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-12939-2_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12938-5
Online ISBN: 978-3-030-12939-2
eBook Packages: Computer ScienceComputer Science (R0)