Skip to main content

Metaheuristic Optimization

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 825))

Abstract

In the area of global optimization, a large number of Metaheuristic Algorithms (MA) had been proposed over the years to solve complex engineering problems in a reasonable amount of time. MAs are stochastic search algorithms that use rules or heuristics applicable to any problem to accelerate their convergence to near-optimal solutions. It is common to observe that MAs emulate processes and behaviors inspired by mechanisms present in nature, such as evolution. In this chapter, the most relevant topics of metaheuristic algorithms are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bartholomew-Biggs MC (2008) Nonlinear optimization with engineering applications. Springer, Berlin

    Book  Google Scholar 

  2. Addis B, Locatelli M, Schoen F (2005) Local optima smoothing for global optimization. Optim Methods Softw 20:417–437. https://doi.org/10.1080/10556780500140029

    Article  MathSciNet  MATH  Google Scholar 

  3. Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

    Article  MathSciNet  MATH  Google Scholar 

  4. Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82. https://doi.org/10.1109/4235.585893

    Article  Google Scholar 

  5. Yang X (2010) Engineering optimization. Engineering optimization. Wiley & Sons Inc, NJ, USA, pp 15–28

    Chapter  Google Scholar 

  6. Shilane D, Martikainen J, Dudoit S, Ovaska SJ (2008) A general framework for statistical performance comparison of evolutionary computation algorithms. Inf Sci (Ny) 178:2870–2879. https://doi.org/10.1016/J.INS.2008.03.007

    Article  Google Scholar 

  7. Mirjalili S (2019) Evolutionary algorithms and neural networks. Studies in Computational Intelligence

    Google Scholar 

  8. Glover F (1989) Tabu search—Part I. ORSA J Comput 1:190–206. https://doi.org/10.1287/ijoc.1.3.190

    Article  MATH  Google Scholar 

  9. Goldfeld SM, Quandt RE, Trotter HF (1966) Maximization by quadratic hill-climbing. Econometrica 34:541. https://doi.org/10.2307/1909768

    Article  MathSciNet  MATH  Google Scholar 

  10. Lourenço HR, Martin OC, Stützle T (2003) Iterated local search. Handbook of metaheuristics. Kluwer Academic Publishers, Boston, pp 320–353

    Chapter  Google Scholar 

  11. van Laarhoven PJM, Aarts EHL (1987) Simulated annealing. Simulated annealing: theory and applications. Springer, Netherlands, Dordrecht, pp 7–15

    Chapter  Google Scholar 

  12. Boussaïd I, Lepagnot J, Siarry P (2013) A survey on optimization metaheuristics. Inf Sci (Ny) 237:82–117. https://doi.org/10.1016/J.INS.2013.02.041

    Article  MathSciNet  MATH  Google Scholar 

  13. Črepinšek M, Liu S-H, Mernik M (2013) Exploration and exploitation in evolutionary algorithms. ACM Comput Surv 45:1–33. https://doi.org/10.1145/2480741.2480752

    Article  MATH  Google Scholar 

  14. Kennedy J, Eberhart RC (1995) Particle swarm optimization. Proceedings of IEEE international conference on neural networks, vol. 4, pp. 1942–1948. https://doi.org/10.1109/icnn.1995.488968

  15. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3:95–99. https://doi.org/10.1023/A:1022602019183

    Article  Google Scholar 

  16. Srinivas N, Deb K (1995) Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol Comput 2:221–248. https://doi.org/10.1162/evco.1994.2.3.221

    Article  Google Scholar 

  17. Deb K (1999) Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evol Comput 7:205–230. https://doi.org/10.1162/evco.1999.7.3.205

    Article  Google Scholar 

  18. Deb K, Member A, Pratap A et al (2002) A fast and elitist multiobjective genetic algorithm. IEEE Trans Evol Comput 6:182–197

    Article  Google Scholar 

  19. Coello CAC, Pulido GTGT, Lechuga MSMS et al (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput 8:256–279. https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  20. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731. https://doi.org/10.1109/tevc.2007.892759

    Article  Google Scholar 

  21. Zhou A, Qu BY, Li H et al (2011) Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evol Comput 1:32–49. https://doi.org/10.1016/j.swevo.2011.03.001

    Article  Google Scholar 

  22. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3:257–271. https://doi.org/10.1109/4235.797969

    Article  Google Scholar 

  23. Fonseca CM, Fleming PJ (1996) On the performance assessment and comparison of stochastic multiobjective optimizers. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  24. López-Ibáñez M, Paquete L, Stützle T (2010) Exploratory analysis of stochastic local search algorithms in biobjective optimization. Experimental methods for the analysis of optimization algorithms. Springer, Berlin, Heidelberg, pp 209–222

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Oliva .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliva, D., Abd Elaziz, M., Hinojosa, S. (2019). Metaheuristic Optimization. In: Metaheuristic Algorithms for Image Segmentation: Theory and Applications. Studies in Computational Intelligence, vol 825. Springer, Cham. https://doi.org/10.1007/978-3-030-12931-6_3

Download citation

Publish with us

Policies and ethics