Skip to main content

Enhance Safety in Aneurysm Surgery: Strategies for Prevention of Intraoperative Vascular Complications

  • Conference paper
  • First Online:
Complications in Neurosurgery

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 130))

Abstract

Complications during surgery for intracranial aneurysms can be devastating. Notorious pitfalls include premature rupture, parent vessel occlusion, local cerebral injury and brain contusion, and incomplete neck obliteration. These unfavorable intraoperative events can result in major neurological deficits with permanent morbidity and even mortality. Herein, the author highlights the relevant surgical strategies used in his daily practice of aneurysm surgery (e.g., aneurysm clipping with adenosine-induced temporary cardiac arrest), application of which may help prevent vascular complications and enhance surgical safety through reduction of the associated risks, thus allowing improvement of postoperative outcomes. Overall, all described methods and techniques should be considered as small pieces in the complex puzzle of prevention of vascular complications during aneurysm surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamide T, Tabani H, Safaee MM, Burkhardt JK, Lawton MT. Microsurgical clipping of ophthalmic artery aneurysms: surgical results and visual outcomes with 208 aneurysms. J Neurosurg. 2018;129:1511–21.

    Article  PubMed  Google Scholar 

  2. von Schilling A, Spetzger U. Clipping of a partially thrombosed giant VA aneurysm. Neurosurg Focus. 2015;38(Video Suppl 1):V18.

    Article  Google Scholar 

  3. Drake CG. Management of cerebral aneurysm. Stroke. 1981;12:273–83.

    Article  CAS  PubMed  Google Scholar 

  4. Rinne J, Hernesniemi J, Niskanen M, Vapalahti M. Analysis of 561 patients with 690 middle cerebral artery aneurysms: anatomic and clinical features as correlated to management outcome. Neurosurgery. 1996;38:2–11.

    Article  CAS  PubMed  Google Scholar 

  5. Hochmuth A, Spetzger U, Schumacher M. Comparison of three-dimensional rotational angiography with digital subtraction angiography in the assessment of ruptured cerebral aneurysms. AJNR Am J Neuroradiol. 2002;23:1199–205.

    PubMed  PubMed Central  Google Scholar 

  6. Dengler J, Maldaner N, Gläsker S, Endres M, Wagner M, Malzahn U, Heuschmann PU, Vajkoczy P. Outcome of surgical or endovascular treatment of giant intracranial aneurysms, with emphasis on age, aneurysm location, and unruptured aneuryms: a systematic review and meta-analysis. Cerebrovasc Dis. 2016;41:187–98.

    Article  PubMed  Google Scholar 

  7. Platz J, Wagner M, Güresir E, You SJ, Konczalla J, de Rochemont RD, Berkefeld J, Seifert V. Early diffusion-weighted MRI lesions after treatment of unruptured intracranial aneurysms: a prospective study. J Neurosurg. 2017;126:1070–8.

    Article  PubMed  Google Scholar 

  8. König A, Spetzger U, editors. Surgery of the skull base: practical diagnosis and therapy. Heidelberg: Springer; 2018.

    Google Scholar 

  9. Kimura T, Morita A, Nishimura K, Aiyama H, Itoh H, Fukaya S, Sora S, Ochiai C. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery. 2009;65:719–26.

    Article  PubMed  Google Scholar 

  10. Aboud E, Aboud G, Al-Mefty O, Aboud T, Rammos S, Abolfotoh M, Hsu SP, Koga S, Arthur A, Krisht A. “Live cadavers” for training in the management of intraoperative aneurysmal rupture. J Neurosurg. 2015;123:1339–46.

    Article  PubMed  Google Scholar 

  11. Spetzger U, von Schilling A, Brombach T, Winkler G. Training models for vascular microneurosurgery. Acta Neurochir Suppl. 2011;112:115–9.

    Article  PubMed  Google Scholar 

  12. Spetzger U, Reul J, Weis J, Bertalanffy H, Thron A, Gilsbach JM. Microsurgically produced bifurcation aneurysms in a rabbit model for endovascular coil embolization. J Neurosurg. 1996;85:488–95.

    Article  CAS  PubMed  Google Scholar 

  13. Nakase H, Kempski OS, Heimann A, Takeshima T, Tintera J. Microcirculation after cerebral venous occlusions as assessed by laser Doppler scanning. J Neurosurg. 1997;87:307–14.

    Article  CAS  PubMed  Google Scholar 

  14. Gertz SD, Rennels ML, Forbes MS, Kawamura J, Sunaga T, Nelson E. Endothelial cell damage by temporary arterial occlusion with surgical clips: study of the clip site by scanning transmission and electron microscopy. J Neurosurg. 1976;45:514–9.

    Article  CAS  PubMed  Google Scholar 

  15. Dujovny M, Wackenhut N, Kossovsky N, Gomes CW, Laha RK, Leff L, Nelson D. Minimum vascular occlusive force. J Neurosurg. 1979;51:662–8.

    Article  CAS  PubMed  Google Scholar 

  16. Horiuchi T, Rahmah NN, Yanagawa T, Hongo K. Revisit of aneurysm clip closing forces: comparison of titanium versus cobalt alloy clip. Neurosurg Rev. 2013;36:133–8.

    Article  PubMed  Google Scholar 

  17. Andrews RJ, Bringas JR. A review of brain retraction and recommendations for minimizing intraoperative brain injury. Neurosurgery. 1993;33:1052–64.

    CAS  PubMed  Google Scholar 

  18. Houkin K, Takahashi A, Abe H. Proper usage of brain retractors in the interhemispheric fissure based on MRI microanatomy: technical note. Surg Neurol. 1994;41:16–8.

    Article  CAS  PubMed  Google Scholar 

  19. Andrews RJ, Muto RP. Retraction brain ischemia: mannitol plus nimodipine preserves both cerebral blood flow and evoked potentials during normoventilation and hyperventilation. Neurol Res. 1992;14:19–25.

    Article  CAS  PubMed  Google Scholar 

  20. Lownie S, Wu X, Karlik S, Gelb AW. Brain retractor edema during induced hypotension: the effect of the rate of return of blood pressure. Neurosurgery. 1990;27:901–6.

    Article  CAS  PubMed  Google Scholar 

  21. Yokoh A, Sugita K, Kobayashi S. Clinical study of brain retraction in different approaches and diseases. Acta Neurochir (Wien). 1987;87:134–9.

    Article  CAS  PubMed  Google Scholar 

  22. Yokoh A, Sugita K, Kobayashi S. Intermittent versus continuous brain retraction: an experimental study. J Neurosurg. 1983;58:918–23.

    Article  CAS  PubMed  Google Scholar 

  23. Jabbarli R, Pierscianek D, Wrede K, Dammann P, Schlamann M, Forsting M, Müller O, Sure U. Aneurysm remnant after clipping: the risks and consequences. J Neurosurg. 2016;125:1249–55.

    Article  PubMed  Google Scholar 

  24. Gilsbach JM, Hassler WE. Intraoperative Doppler and real time sonography in neurosurgery. Neurosurg Rev. 1984;7:199–208.

    Article  CAS  PubMed  Google Scholar 

  25. Kapsalaki EZ, Lee GP, Robinson JS 3rd, Grigorian AA, Fountas KN. The role of intraoperative micro-Doppler ultrasound in verifying proper clip placement in intracranial aneurysm surgery. J Clin Neurosci. 2008;15:153–7.

    Article  CAS  PubMed  Google Scholar 

  26. Stendel R, Pietilä T, Al Hassan AA, Schilling A, Brock M. Intraoperative microvascular Doppler ultrasonography in cerebral aneurysm surgery. J Neurol Neurosurg Psychiatry. 2000;68:29–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Raabe A, Nakaji P, Beck J, Kim LJ, Hsu FP, Kamerman JD, Seifert V, Spetzler RF. Prospective evaluation of surgical microscope–integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg. 2005;103:982–9.

    Article  PubMed  Google Scholar 

  28. Smrcka M, Ogilvy CS, Crow RJ, Maynard KI, Kawamata T, Ames A 3rd. Induced hypertension improves regional blood flow and protects against infarction during focal ischemia: time course of changes in blood flow measured by laser Doppler imaging. Neurosurgery. 1998;42:617–25.

    Article  CAS  PubMed  Google Scholar 

  29. Lavine SD, Masri LS, Levy ML, Giannotta SL. Temporary occlusion of the middle cerebral artery in intracranial aneurysm surgery: time limitation and advantage of brain protection. J Neurosurg. 1997;87:817–24.

    Article  CAS  PubMed  Google Scholar 

  30. McDermont MW, Durity FA, Borozny M, Mountain MA. Temporary vessel occlusion and barbiturate protection in cerebral aneurysm surgery. Neurosurgery. 1989;25:54–62.

    Article  Google Scholar 

  31. Samson D, Batjer HH, Bowman G, Mootz L, Krippner WJ Jr, Meyer YJ, Allen BC. A clinical study of the parameters and the effects of temporary arterial occlusion in the management of intracranial aneurysms. Neurosurgery. 1994;34:22–9.

    CAS  PubMed  Google Scholar 

  32. Baran U, Zhu W, Choi WJ, Omori M, Zhang W, Alkayed NJ, Wang RK. Automated segmentation and enhancement of optical coherence tomography–acquired images of rodent brain. J Neurosci Methods. 2016;270:132–7.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Buchthal A, Belopavlovic M, Mooij JJA. Evoked potential monitoring and temporary clipping in cerebral aneurysm surgery. Acta Neurochir (Wien). 1988;93:28–36.

    Article  CAS  PubMed  Google Scholar 

  34. Charbel FT, Ausman JL, Diaz FG, Malik GM, Dujovny M, Sanders J. Temporary clipping in aneurysm surgery: techniques and results. Surg Neurol. 1991;36:83–90.

    Article  CAS  PubMed  Google Scholar 

  35. Ogilvy CS, Carter BS, Kaplan S, Rich C, Crowell RM. Temporary vessel occlusion for aneurysm surgery: risk factors for stroke in patients protected by induced hypothermia and hypertension and intravenous mannitol administration. J Neurosurg. 1996;84:785–91.

    Article  CAS  PubMed  Google Scholar 

  36. Staarmann B, O'Neal K, Magner M, Zuccarello M. Sensitivity and specificity of intraoperative neuromonitoring for identifying safety and duration of temporary aneurysm clipping based on vascular territory, a multimodal strategy. World Neurosurg. 2017;100:522–30.

    Article  PubMed  Google Scholar 

  37. Alkan T, Kahveci N, Goren B, Korfali E, Ozluk K. Effects of interrupted and uninterrupted occlusion of the basilar artery on cerebral blood flow, and on neurological and histological outcome in rats with subarachnoid hemorrhage. Arch Physiol Biochem. 2001;109:154–60.

    Article  CAS  PubMed  Google Scholar 

  38. Steinberg GK, Panahian N, Sun GH, Maier CM, Kunis D. Cerebral damage caused by interrupted, repeated arterial occlusion versus uninterrupted occlusion in a focal ischemic model. J Neurosurg. 1994;81:554–9.

    Article  CAS  PubMed  Google Scholar 

  39. Grasso G, Landi A, Alafaci C. Multimodal intraoperative neuromonitoring in aneurysm surgery. World Neurosurg. 2017;101:763–5.

    Article  PubMed  Google Scholar 

  40. Friedman WA, Chadwick GM, Verhoeven FJ, Mahla M, Day AL. Monitoring of somatosensory evoked potentials during surgery for middle cerebral artery aneurysms. Neurosurgery. 1991;29:83–8.

    Article  CAS  PubMed  Google Scholar 

  41. Momma F, Wang AD, Symon L. Effects of temporary arterial occlusion on somatosensory evoked responses in aneurysm surgery. Surg Neurol. 1987;27:343–52.

    Article  CAS  PubMed  Google Scholar 

  42. Schramm J, Koht A, Schmidt G, Pechstein U, Taniguchi M, Fahlbusch R. Surgical and electrophysiological observations during clipping of 134 aneurysms with evoked potential monitoring. Neurosurgery. 1990;26:61–70.

    Article  CAS  PubMed  Google Scholar 

  43. Chung J, Park W, Hong SH, Park JC, Ahn JS, Kwun BD, Lee SA, Kim SH, Jeon JY. Intraoperative use of transcranial motor/sensory evoked potential monitoring in the clipping of intracranial aneurysms: evaluation of false-positive and false-negative cases. J Neurosurg. 2018;130:936–48.

    Article  PubMed  Google Scholar 

  44. Thomas B, Guo D. The diagnostic accuracy of evoked potential monitoring techniques during intracranial aneurysm surgery for predicting postoperative ischemic damage: a systematic review and meta-analysis. World Neurosurg. 2017;103:829–40.

    Article  PubMed  Google Scholar 

  45. Gilsbach JM. Intraoperative Doppler sonography in neurosurgery. Vienna: Springer; 1983.

    Book  Google Scholar 

  46. Malinova V, von Eckardstein K, Rohde V, Mielke D. Neuronavigated microvascular Doppler sonography for intraoperative monitoring of blood flow velocity changes during aneurysm surgery—a feasible monitoring technique. Clin Neurol Neurosurg. 2015;137:79–82.

    Article  PubMed  Google Scholar 

  47. Charbel FT, Hoffman WE, Misra M, Hannigan K, Ausman JI. Role of a perivascular ultrasonic micro-flow probe in aneurysm surgery. Neurol Med Chir (Tokyo). 1998;38(Suppl):35–8.

    Article  PubMed  Google Scholar 

  48. Charbel FT, Gonzales-Portillo G, Hoffman WE, Ostergren LA, Misra M. Quantitative assessment of vessel flow integrity for aneurysm surgery: technical note. J Neurosurg. 1999;91:1050–4.

    Article  CAS  PubMed  Google Scholar 

  49. Amin-Hanjani S, Meglio G, Gatto R, Bauer A, Charbel FT. The utility of intraoperative blood flow measurement during aneurysm surgery using an ultrasonic perivascular flow probe. Neurosurgery. 2006;58(4 Suppl 2):ONS305–12.

    Google Scholar 

  50. Marbacher S, Mendelowitsch I, Grüter BE, Diepers M, Remonda L, Fandino J. Comparison of 3D intraoperative digital subtraction angiography and intraoperative indocyanine green video angiography during intracranial aneurysm surgery. J Neurosurg. 2018;131:64–71.

    Article  PubMed  Google Scholar 

  51. Suzuki K, Kodama N, Sasaki T, Matsumoto M, Ichikawa T, Munakata R, Muramatsu H, Kasuya H. Confirmation of blood flow in perforating arteries using fluorescein cerebral angiography during aneurysm surgery. J Neurosurg. 2007;107:68–73.

    Article  PubMed  Google Scholar 

  52. Lane B, Bohnstedt BN, Cohen-Gadol AA. A prospective comparative study of microscope-integrated intraoperative fluorescein and indocyanine videoangiography for clip ligation of complex cerebral aneurysms. J Neurosurg. 2015;122:618–26.

    Article  PubMed  Google Scholar 

  53. Bruneau M, Appelboom G, Rynkowski M, Van Cutsem N, Mine B, De Witte O. Endoscope-integrated ICG technology: first application during intracranial aneurysm surgery. Neurosurg Rev. 2013;36:77–85.

    PubMed  Google Scholar 

  54. Mielke D, Malinova V, Rohde V. Comparison of intraoperative microscopic and endoscopic ICG angiography in aneurysm surgery. Oper Neurosurg. 2014;10:418–25.

    Article  Google Scholar 

  55. Washington CW, Zipfel GJ, Chicoine MR, Derdeyn CP, Rich KM, Moran CJ, Cross DT, Dacey RG Jr. Comparing indocyanine green videoangiography to the gold standard of intraoperative digital subtraction angiography used in aneurysm surgery. J Neurosurg. 2013;118:420–7.

    Article  PubMed  Google Scholar 

  56. Alexander TD, Macdonald RL, Weir B, Kowalczuk A. Intraoperative angiography in cerebral aneurysm surgery: a prospective study of 100 craniotomies. Neurosurgery. 1996;39:10–8.

    Article  CAS  PubMed  Google Scholar 

  57. Groff MW, Adams DC, Kahn RA, Kumbar UM, Yang BY, Bederson JB. Adenosine-induced transient asystole for management of a basilar artery aneurysm: case report. J Neurosurg. 1999;91:687–90.

    Article  CAS  PubMed  Google Scholar 

  58. Guinn NR, McDonagh DL, Borel CO, Wright DR, Zomorodi AR, Powers CJ, Warner DS, Lam AM, Britz GW. Adenosine-induced transient asystole for intracranial aneurysm surgery: a retrospective review. J Neurosurg Anesthesiol. 2011;23:35–40.

    Article  PubMed  Google Scholar 

  59. Lee SH, Kwun BD, Kim JU, Choi JH, Ahn JS, Park W, Yun JH. Adenosine-induced transient asystole during intracranial aneurysm surgery: indications, dosing, efficacy, and risks. Acta Neurochir (Wien). 2015;157:1879–86.

    Article  PubMed  Google Scholar 

  60. Bebawy JF, Gupta DK, Bendok BR, Hemmer LB, Zeeni C, Avram MJ, Batjer HH, Koht A. Adenosine-induced flow arrest to facilitate intracranial aneurysm clip ligation: dose–response data and safety profile. Anesth Analg. 2010;110:1406–11.

    Article  CAS  PubMed  Google Scholar 

  61. Bendok BR, Gupta DK, Rahme RJ, Eddleman CS, Adel JG, Sherma AK, Surdell DL, Bebawy JF, Koht A, Batjer HH. Adenosine for temporary flow arrest during intracranial aneurysm surgery: a single-center retrospective review. Neurosurgery. 2011;69:815–21.

    Article  PubMed  Google Scholar 

  62. Konczalla J, Platz J, Fichtlscherer S, Mutlak H, Strouhal U, Seifert V. Rapid ventricular pacing for clip reconstruction of complex unruptured intracranial aneurysms: results of an interdisciplinary prospective trial. J Neurosurg. 2018;128:1741–52.

    Article  PubMed  Google Scholar 

  63. Saldien V, Menovsky T, Rommens M, Van der Steen G, Van Loock K, Vermeersch G, Mott C, Bosmans J, De Ridder D, Maas AI. Rapid ventricular pacing for flow arrest during cerebrovascular surgery: revival of an old concept. Neurosurgery. 2012;70(2 Suppl Operative):270–5.

    PubMed  Google Scholar 

  64. Hütter BO, Kreitschmann-Andermahr I, Mayfrank L, Rohde V, Spetzger U, Gilsbach JM. Functional outcome after aneurysmal subarachnoid hemorrhage. Acta Neurochir Suppl. 1999;72:157–74.

    PubMed  Google Scholar 

  65. Kamide T, Burkhardt JK, Tabani H, Safaee MM, Lawton MT. Preoperative prediction of the necessity for anterior clinoidectomy during microsurgical clipping of ruptured posterior communicating artery aneurysms. World Neurosurg. 2018;109:e493–501.

    Article  PubMed  Google Scholar 

  66. Caplan JM, Sankey E, Gullotti D, Wang J, Westbroek E, Hwang B, Huang J. Contralateral approach for clipping of bilateral anterior circulation aneurysms. Neurosurg Focus. 2015;39(Video Suppl 1):V9.

    Article  PubMed  Google Scholar 

  67. Spetzger U, Rohde V, Mayfrank L, Bertalanffy H, Gilsbach J. Unilateral approach in multiple bilateral cerebral aneurysms. Surg Cereb Stroke (Jpn). 1998;26:20–5.

    Article  Google Scholar 

  68. Batjer H, Samson D. Intraoperative aneurysmal rupture: incidence, outcome and suggestions for surgical management. Neurosurgery. 1986;18:701–7.

    Article  CAS  PubMed  Google Scholar 

  69. Sheth SA, Hausrath D, Numis AL, Lawton MT, Josephson SA. Intraoperative rerupture during surgical treatment of aneurysmal subarachnoid hemorrhage is not associated with an increased risk of vasospasm. J Neurosurg. 2014;120:409–14.

    Article  PubMed  Google Scholar 

  70. Yamamoto J. Clipping of posteriorly projecting large posterior communicating aneurysm via transsylvian anterior temporal approach. Neurosurg Focus. 2015;39(Video Suppl 1):V15.

    Article  PubMed  Google Scholar 

  71. Otani N, Morimoto Y, Fujii K, Toyooka T, Wada K, Mori K. Flexible ultrathin endoscope integrated with irrigation suction apparatus for assisting microneurosurgery. World Neurosurg. 2017;108:589–94.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Empathically, I want to thank my mentors and friends Joachim M. Gilsbach, Helmut Bertalanffy, and Takanori Fukushima for their intensive training and teaching in the field of vascular microsurgery.

Conflict of Interest Statement

Uwe Spetzger, MD, has a contractual relationship with Carl Zeiss Meditec, Inc., and has received financial compensation for this.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Spetzger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Spetzger, U. (2023). Enhance Safety in Aneurysm Surgery: Strategies for Prevention of Intraoperative Vascular Complications. In: Turel, K.E., Chernov, M.F., Sarkar, H. (eds) Complications in Neurosurgery. Acta Neurochirurgica Supplement, vol 130. Springer, Cham. https://doi.org/10.1007/978-3-030-12887-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12887-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12886-9

  • Online ISBN: 978-3-030-12887-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics