Advertisement

Simulation of Mixed Critical In-Vehicular Networks

  • Philipp MeyerEmail author
  • Franz Korf
  • Till Steinbach
  • Thomas C. Schmidt
Chapter
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)

Abstract

Future automotive applications ranging from advanced driver assistance to autonomous driving will largely increase demands on in-vehicular networks. Data flows of high bandwidth or low latency requirements, but in particular many additional communication relations will introduce a new level of complexity to the in-car communication system. It is expected that future communication backbones which interconnect sensors and actuators with Electronic Control Units (ECUs) in cars will be built on Ethernet technologies. However, signaling from different application domains demands for network services of tailored attributes, including real-time transmission protocols as defined in the Time-Sensitive Networking (TSN) Ethernet extensions. These Quality of Service (QoS) constraints will increase network complexity even further. Event-based simulation is a key technology to master the challenges of an in-car network design. This chapter introduces the domain-specific aspects and simulation models for in-vehicular networks and presents an overview of the car-centric network design process. Starting from a domain-specific description language, we cover the corresponding simulation models with their workflows and apply our approach to a related case study for an in-car network of a premium car.

References

  1. 1.
    Aeronautical Radio Incorporated: Aircraft Data Network. Standard 664. ARINC, Annapolis (2002)Google Scholar
  2. 2.
    Bettini, L.: Implementing Domain Specific Languages with Xtext and Xtend, 2nd edn. Packt Publishing, Birmingham (2016)Google Scholar
  3. 3.
    Buschmann, S., Steinbach, T., Korf, F., Schmidt, T.C.: Simulation based timing analysis of FlexRay communication at system level. In: Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques, pp. 285–290. ACM-DL, New York (2013)Google Scholar
  4. 4.
    CoRE Working Group: CoRE Simulation Models for Real-Time Networks. https://sim.core-rg.de/trac
  5. 5.
    Eclipse Foundation Inc.: Xtext. https://www.eclipse.org/Xtext/index.html
  6. 6.
    El Salloum, C., Bilic, K.: FlexRay, chap. 6, pp. 121–152. CRC Press, Boca Raton (2012)Google Scholar
  7. 7.
    Hillebrand, J., Rahmani, M., Bogenberger, R., Steinbach, E.: Coexistence of time-triggered and event-triggered traffic in switched full-duplex Ethernet networks. In: International Symposium on Industrial Embedded Systems, 2007. SIES ’07, pp. 217–224 (2007).  https://doi.org/10.1109/SIES.2007.4297338
  8. 8.
    Institute of Electrical and Electronics Engineers: 802.1Qav - forwarding and queuing enhancements for time-sensitive streams. IEEE Standard for Information Technology. IEEE, New York (2009)Google Scholar
  9. 9.
    Institute of Electrical and Electronics Engineers: IEEE 802.1Qat - IEEE standard for local and metropolitan area networks - virtual bridged local area networks - amendment 14: Stream Reservation Protocol (SRP). Standard IEEE 802.1Qat-2010. IEEE, Piscataway (2010)Google Scholar
  10. 10.
    Institute of Electrical and Electronics Engineers: IEEE 802.1BA - IEEE standard for local and metropolitan area networks - Audio Video Bridging (AVB) Systems. Standard IEEE 802.1BA-2011. IEEE, Piscataway (2011)Google Scholar
  11. 11.
    Institute of Electrical and Electronics Engineers: 802.1Qbv - bridges and bridged networks - amendment: enhancements for scheduled traffic. Draft Standard P802.1Qbv/D1.0. IEEE, Piscataway (2013)Google Scholar
  12. 12.
    Institute of Electrical and Electronics Engineers: Standard for Ethernet amendment 1: Physical layer specifications and management parameters for 100 Mb/s operation over a single balanced twisted pair cable (100BASE-T1). Standard IEEE Std 802.3bw-2015. IEEE, Piscataway (2015)Google Scholar
  13. 13.
    Institute of Electrical and Electronics Engineers: Standard for Ethernet amendment 4: physical layer specifications and management parameters for 1 Gb/s operation over a single twisted-pair copper cable. Standard IEEE Std 802.3bp-2016. IEEE, Piscataway (2016)Google Scholar
  14. 14.
    Kamieth, J., Steinbach, T., Korf, F., Schmidt, T.C.: Design of TDMA-based in-car networks: applying multiprocessor scheduling strategies on time-triggered switched Ethernet communication. In: 19th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2014), pp. 1–9. IEEE Press, Piscataway (2014).  https://doi.org/10.1109/ETFA.2014.7005119
  15. 15.
    Matheus, K., Königseder, T.: Automotive Ethernet. Cambridge University Press, Cambridge (2015)Google Scholar
  16. 16.
    Meyer, P., Steinbach, T., Korf, F., Schmidt, T.C.: Extending IEEE 802.1 AVB with time-triggered scheduling: a simulation study of the coexistence of synchronous and asynchronous traffic. In: 2013 IEEE Vehicular Networking Conference (VNC), pp. 47–54. IEEE Press, Piscataway (2013).  https://doi.org/10.1109/VNC.2013.6737589
  17. 17.
    Müller, K., Steinbach, T., Korf, F., Schmidt, T.C.: A real-time Ethernet prototype platform for automotive applications. In: 1st IEEE International Conference on Consumer Electronics - Berlin (ICCE-Berlin 2011), pp. 221–225. IEEE Press, Piscataway (2011)Google Scholar
  18. 18.
    Reimann, C., Filzmoser, P., Garrett, R., Dutter, R.: Statistical Data Analysis Explained - Applied Environmental Statistics with R. Wiley, New York (2008)CrossRefGoogle Scholar
  19. 19.
    Robert Bosch GmbH: Bosch Automotive Electrics and Automotive Electronics - Systems and Components, Networking and Hybrid Drive. Springer, Berlin (2013)Google Scholar
  20. 20.
    SAE - AS-2D Time Triggered Systems and Architecture Committee: Time-Triggered Ethernet (AS 6802) (2009). http://www.sae.org
  21. 21.
    Society of Automotive Engineers - AS-2D Time Triggered Systems and Architecture Committee: Time-Triggered Ethernet AS6802. SAE Aerospace (2011). http://standards.sae.org/as6802/
  22. 22.
    Steinbach, T., Korf, F., Schmidt, T.C.: Comparing time-triggered Ethernet with FlexRay: an evaluation of competing approaches to real-time for in-vehicle networks. In: 8th IEEE International Workshop on Factory Communication Systems (WFCS 2010), pp. 199–202. IEEE Press, Piscataway (2010)Google Scholar
  23. 23.
    Steinbach, T., Dieumo Kenfack, H., Korf, F., Schmidt, T.C.: An extension of the OMNeT++ INET framework for simulating real-time Ethernet with high accuracy. In: SIMUTools 2011 – 4th International OMNeT++ Workshop, pp. 375–382. ACM, New York (2011)Google Scholar
  24. 24.
    Steinbach, T., Lim, H.T., Korf, F., Schmidt, T.C., Herrscher, D., Wolisz, A.: Tomorrow’s in-car interconnect? A competitive evaluation of IEEE 802.1 AVB and time-triggered Ethernet (AS6802). In: 76th IEEE Vehicular Technology Conference: VTC2012-Fall, pp. 1–5. IEEE Press, Piscataway (2012)Google Scholar
  25. 25.
    Steinbach, T., Müller, K., Korf, F., Röllig, R.: Real-time Ethernet in-car backbones: first insights into an automotive prototype. In: 2014 IEEE Vehicular Networking Conference (VNC), pp. 137–138. IEEE Press, Piscataway (2014).  https://doi.org/10.1109/VNC.2014.7013331
  26. 26.
    Steinbach, T., Lim, H.T., Korf, F., Schmidt, T.C., Herrscher, D., Wolisz, A.: Beware of the hidden! How cross-traffic affects quality assurances of competing real-time ethernet standards for in-car communication. In: 2015 IEEE Conference on Local Computer Networks (LCN), pp. 1–9. IEEE Press, Piscataway (2015)Google Scholar
  27. 27.
    Steinbach, T.: Ethernet-basierte Fahrzeugnetzwerkarchitekturen für zukünftige Echtzeitsysteme im Automobil, Springer Vieweg, Wiesbaden (2018). doi: 10.1007/978-3-658-23500-0 CrossRefGoogle Scholar
  28. 28.
    Wolfhard, L. (ed.): CAN System Engineering From Theory to Practical Applications, 2nd edn. Springer, London (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Philipp Meyer
    • 1
    Email author
  • Franz Korf
    • 1
  • Till Steinbach
    • 2
  • Thomas C. Schmidt
    • 1
  1. 1.Department InformatikHAW HamburgHamburgGermany
  2. 2.Ibeo Automotive Systems GmbHHamburgGermany

Personalised recommendations