Abstract
The design of long-span bridges consists of dealing with a large number of design variables and it is conditioned by responses of structural and aeroelastic nature. A deep knowledge about the influence of these variables governing the bridge responses is crucial to achieve efficient and safe designs. Apart from heuristic rules, numerical approaches, such as parameter variation studies, sensitivity analysis and optimization algorithms, can provide reliable information to improve designs. This work studies the effects on the flutter and structural responses of a cable-stayed bridge when the mechanical, mass, aerodynamic and aeroelastic properties of a streamlined mono-box deck are modified. These results are used to understand qualitatively and quantitatively the effects caused by the variation of the deck plate thickness and cross-section shape on the bridge responses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andersen MS, Johansson J, Brandt A, Hansen SO (2016) Aerodynamic stability of long span suspension bridges with low torsional natural frequencies. Eng Struct 120:82–91
Argentini T, Pagani A, Rocchi D, Zasso A (2014) Monte Carlo analysis of total damping and flutter speed of a long span bridge: effects of structural and aerodynamic uncertainties. J Wind Eng Ind Aerodyn 128:90–104
Cid Montoya M, Nieto F, Hernández S, Kusano I, Álvarez AJ, Jurado JÁ (2018a) CFD-based aeroelastic characterization of streamlined bridge deck cross-sections subject to shape modifications using surrogate models. J Wind Eng Ind Aerodyn 177:405–428
Cid Montoya M, Hernández S, Nieto F (2018b) Shape optimization of streamlined decks of cable-stayed bridges considering aeroelastic and structural constraints. J Wind Eng Ind Aerodyn 177:429–455
Jurado JÁ, Hernández S (2004) Sensitivity analysis of bridge flutter with respect to mechanical parameters of the deck. Struct Multidiscip Optim 27(4):272–283
Jurado JÁ, Nieto F, Hernández S, Mosquera A (2008) Efficient cable arrangement in cable stayed bridges based on sensitivity analysis of aeroelastic behaviour. Adv Eng Softw 39:757–763
Jurado JÁ, Hernández S, Nieto F, Mosquera A (2011) Bridge aeroelasticity: sensitivity analysis and optimal design. WIT Press, Southampton
Matsumoto M, Kobayashi Y, Shirato H (1996) The influence of aerodynamic derivatives on flutter. J Wind Eng Ind Aerodyn 60:227–239
Matsumoto M, Matsumiya H, Fujiwara S, Ito Y (2010) New consideration on flutter properties based on step-by-step analysis. J Wind Eng Ind Aerodyn 98:429–437
Nieto F, Hernández S, Jurado JÁ (2009) Optimum design of long-span suspension bridges considering aeroelastic and kinematic constraints. Struct Multidiscip Optim 39:133–151
Nieto F, Hernández S, Jurado JÁ, Mosquera A (2011) Analytical approach to sensitivity analysis of flutter speed in bridges considering variable deck mass. Adv Eng Softw 42(4):117–129
Øiseth O, Rönnquist A, Sigbjörnsson R (2010) Simplified prediction of wind-induced response and stability limit of slender long-span suspension bridges, based on modified quasi-steady theory: a case study. J Wind Eng Ind Aerodyn 98:730–741
Tao T, Wang H, Wu T (2017) Parametric study on buffeting performance of a long-span triple-tower suspension bridge. Struct Infrastruct Eng 14:381–399
Wang H, Tao T, Zhou R, Hua X, Kareem A (2014) Parameter sensitivity study on flutter stability of a long-span triple-tower suspension bridge. J Wind Eng Ind Aerodyn 128:12–21
Zhang X-J, Sun B-N (2003) Study of design parameters on flutter stability of cable-stayed bridges. Wind Struct 6(4):279–290
Zhang X-J (2006) Study of design parameters on flutter stability of cable-stayed-suspension hybrid bridges. Wind Struct 9(4):331–344
Acknowledgements
The research leading to these results has received funding from the Spanish Minister of Economy and Competitiveness (MINECO) with reference BIA2016-76656-R. The first author has been also founded by the Fundación Pedro Barrié de la Maza and the University of La Coruña. The authors fully acknowledge the support received.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Cid Montoya, M., Nieto, F., Hernández, S., Jurado, J.Á. (2019). On the Aerostructural Design of Long-Span Cable-Stayed Bridges: The Contribution of Parameter Variation Studies with Focus on the Deck Design. In: Ricciardelli, F., Avossa, A. (eds) Proceedings of the XV Conference of the Italian Association for Wind Engineering. IN VENTO 2018. Lecture Notes in Civil Engineering, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-12815-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-12815-9_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12814-2
Online ISBN: 978-3-030-12815-9
eBook Packages: EngineeringEngineering (R0)