Chain Code P System Generating a Variant of the Peano Space-Filling Curve

  • Rodica CeterchiEmail author
  • Atulya K. Nagar
  • K. G. Subramanian
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11399)


Generation of the finite approximations of the well-known Hilbert and Peano space-filling curves, represented as chain-code words has been studied in an earlier work. The generation was done with parallel chain code P systems with objects as chain code words and rewriting with context-free rules in parallel. Continuing this line of work, finite approximations of a variant of the Peano curve considered by Wunderlich are generated here with parallel chain code P system. We also generate approximating polygons corresponding to the Peano curve with parallel chain code P system.



We thank the anonymous referees for their valuable suggestions and comments which greatly helped to improve the paper.


  1. 1.
    Ceterchi, R., Mutyam, M., Pǎun, G., Subramanian, K.G.: Array - rewriting P systems. Nat. Comput. 2, 229–249 (2003)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ceterchi, R., Nagar, A.K., Subramanian, K.G.: Approximating polygons for space-filling curves generated with P systems. In: Graciani, C., Riscos-Núñez, A., Păun, G., Rozenberg, G., Salomaa, A. (eds.) Enjoying Natural Computing. LNCS, vol. 11270, pp. 57–65. Springer, Cham (2018). Scholar
  3. 3.
    Ceterchi, R., Subramanian, K.G., Venkat, I.: P systems with parallel rewriting for chain code picture languages. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 145–155. Springer, Cham (2015). Scholar
  4. 4.
    Dassow, J., Habel, A., Taubenberger, S.: Chain-code pictures and collages generated by hyperedge replacement. In: Cuny, J., Ehrig, H., Engels, G., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 412–427. Springer, Heidelberg (1996). Scholar
  5. 5.
    Drewes, F.: Some remarks on the generative power of collage grammars and chain-code grammars. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 1–14. Springer, Heidelberg (2000). Scholar
  6. 6.
    Gheorghe, M., Pǎun, Gh., Pérez Jiménez, M.J., Rozenberg, G.: Research frontiers of membrane computing: open problems and research topics. Int. J. Found. Comput. Sci. 24(5), 547–624 (2013)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Kitaev, S., Mansour, T., Seebold, P.: The Peano curve and counting occurrences of some patterns. J. Autom. Lang. Combin. 9(4), 439–455 (2004)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Maurer, H.A., Rozenberg, G., Welzl, E.: Using string languages to describe picture languages. Inf. Control 54, 155–185 (1982)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Pǎun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Salomaa, A.: Formal Languages. Academic Press, London (1973)zbMATHGoogle Scholar
  11. 11.
    Sagan, H.: Space-Filling Curves. Springer, New York (1994). Scholar
  12. 12.
    Seebold, P.: Tag system for the Hilbert curve. Discrete Math. Theor. Comput. Sci. 9, 213–226 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Siromoney, R., Subramanian, K.G.: Space-filling curves and infinite graphs. In: Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153, pp. 380–391. Springer, Heidelberg (1983). Scholar
  14. 14.
    Subramanian, K.G.: P systems and picture languages. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007. LNCS, vol. 4664, pp. 99–109. Springer, Heidelberg (2007). Scholar
  15. 15.
    Subramanian, K.G., Venkat, I., Pan, L.: P systems generating chain code picture languages. In: Proceedings of Asian Conference on Membrane Computing, pp. 115–123 (2012)Google Scholar
  16. 16.
    Wunderlich, W.: Über Peano-Kurven. Elem. Math. 28, 1–10 (1973)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rodica Ceterchi
    • 1
    Email author
  • Atulya K. Nagar
    • 2
  • K. G. Subramanian
    • 2
  1. 1.Faculty of Mathematics and Computer ScienceUniversity of BucharestBucharestRomania
  2. 2.Faculty of ScienceLiverpool Hope University, Hope ParkLiverpoolUK

Personalised recommendations