An Improved Quicksort Algorithm Based on Tissue-Like P Systems with Promoters

  • Shuo Yan
  • Jie XueEmail author
  • Xiyu Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11399)


P systems are distributed and parallel computing models. In this paper, we proposed an improved Quicksort algorithm, called ECTPP-Quicksort, which is based on evolution-communication tissue-like P systems with promoters. ECTPP-Quicksort, taking advantage of the parallel nature, allows objects to be sorted to evolve according to instructions or rules simultaneously. In this way, the time complexity of Quicksort is improved greatly to \(O(log_2n)\) compared to \(O(nlog_2n)\) of the conventional Quicksort algorithm. We designed the rules, objects, membrane structures and some other characteristics of ECTPP-Quicksort P system in detail. It is meaningful to the development of membrane computing.


Quicksort algorithm P systems Improved 


  1. 1.
    Evans, D.J., Dunbar, R.C.: Quicksort. Comput. J. 5(1), 10–15 (1962)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Evans, D.J., Dunbar, R.C.: The parallel quicksort algorithm part I-run time analysis. Int. J. Comput. Math. 12(1), 19–55 (1982)CrossRefGoogle Scholar
  3. 3.
    Cederman, D., Tsigas, P.: GPU-Quicksort: a practical quicksort algorithm for graphics processors. J. Exp. Algorithmics 14, 4 (2010)zbMATHGoogle Scholar
  4. 4.
    Reif, J.H.: Synthesis of Parallel Algorithms. Morgan Kaufmann Publishers Inc., Burlington (1993)Google Scholar
  5. 5.
    Wagar, B.: Hyperquicksort: a fast sorting algorithm for hypercubes. In: Heath, M. (ed.) Hypercube Multiprocessors, pp. 292–299. SIAM, Philadelphia (1987)Google Scholar
  6. 6.
    Powers, D.M.W.: Informatik: Universitt Kaiserslautern. Parallelized QuickSort with Optimal Speedup (1991)Google Scholar
  7. 7.
    Arulanandham, J.J.: Implementing bead-sort with P systems. In: Calude, C.S., Dinneen, M.J., Peper, F. (eds.) UMC 2002. LNCS, vol. 2509, pp. 115–125. Springer, Heidelberg (2002). Scholar
  8. 8.
    Ceterchi, R., Martin-Vide, C.: Dynamic P Systems. Revised Papers from the International Workshop on Membrane Computing 24(4), 146–186 (2002)zbMATHGoogle Scholar
  9. 9.
    Ceterchi, R., Martin-Vide. C.: P systems with communication for static sortings. In: Brainstorming Week on Membrane Computing, pp. 5–11 (2003)CrossRefGoogle Scholar
  10. 10.
    Ceterchi, R., Pérez-Jiménez, M.J., Tomescu, A.I.: Simulating the bitonic sort using P systems. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 172–192. Springer, Heidelberg (2007). Scholar
  11. 11.
    Ceterchi, R., Tomescu, A.I.: Implementing sorting networks with spiking neural P systems. Fundam. Inf. 87(1), 35–48 (2008)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Alhazov, A., Sburlan, D.: Static sorting P systems. In: Ciobanu, G., Pâun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing. NCS, pp. 215–252. Springer, Heidelberg (2005). Scholar
  13. 13.
    Ceterchi, R., Pérez-Jiménez, M.D.J., Tomescu, A.I.: Sorting omega networks simulated with P systems optimal data layouts. Daniel Díaz-Pernil, pp. 79–92 (2010)Google Scholar
  14. 14.
    Freund, R., Pǎun, G., Pérez-Jiménez, M.J.: Tissue P systems with channel states. Theor. Comput. Sci. 330(1), 101–116 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Song, B., Zhang, C., Pan, L.: Tissue-like P systems with evolutional symport/antiport rules. Inf. Sci. 378, 177–193 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Giavitto, J., Michel, O.: The topological structures of membrane computing. Fundam. Inf. 49(1–3), 123–145 (2002)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.School of Management Science and EngineeringShandong Normal UniversityJinanChina

Personalised recommendations