Skip to main content

On Small Universality of Spiking Neural P Systems with Multiple Channels

  • Conference paper
  • First Online:
Book cover Membrane Computing (CMC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11399))

Included in the following conference series:

Abstract

SN P systems with multiple channels are a new variant of spiking neural P systems (SN P systems, in short), which introduce channel labels into spiking rules. The computational power of SN P systems with multiple channels in computing Turing computable function is investigated, and two small SN P systems with multiple channels are constructed in this work. We obtain two universal systems with 57 neurons using standard spiking rules and 39 neurons using extended spiking rules, respectively.

Supported by the Chunhui Project Foundation of the Education Department of China (Nos. Z2017082, Z2016143 and Z2016148), Foundation of Sichuan Province Key Laboratory of Power Electronics Energy-saving Technologies & Equipment (No. szjj2015-065), National Natural Science Foundation of China (Nos. 61472328 and 61703345), Sichuan Province Key Laboratory of Power Electronics Energy-saving Technologies & Equipment (No. szjj2016-048) and Research Foundation of the Education Department of Sichuan province (No. 17TD0034), China.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pǎun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Pǎun, G.: Membrane Computing: An Introduction. Springer, Berlin (2002). https://doi.org/10.1007/978-3-642-56196-2

    Book  MATH  Google Scholar 

  3. Martín-Vide C., Pǎun G., Pazos J., Rodríguez-Patón A.: Tissue P systems. Theor. Comput. Sci. 296, 295–326 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pǎun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)

    Book  MATH  Google Scholar 

  5. Ionescu, M., Pǎun, G., Yokomori, T.: Spiking neural P systems. Fundam. Informaticae 71, 279–309 (2006)

    Google Scholar 

  6. Pǎun, A., Pǎun, G.: Small universal spiking neural P systems. BioSystems 90(1), 48–60 (2007)

    Article  MATH  Google Scholar 

  7. Neary, T.: A universal spiking neural P system with 11 neurons. In: Proceedings of the Eleventh International Conference on Membrane Computing, pp. 327–346. Springer, Jena (2010)

    Google Scholar 

  8. Neary, T.: Three small universal spiking neural P systems. Theor. Comput. Sci. 567, 2–20 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhang, X., Zeng, X., Pan, L.: Smaller universal spiking neural P systems. Fundam. Informaticae 87(1), 117–136 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Neary, T.: A boundary between universality and non-universality in extended spiking neural P systems. In: Dediu, A.-H., Fernau, H., Martín-Vide, C. (eds.) LATA 2010. LNCS, vol. 6031, pp. 475–487. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13089-2_40

    Chapter  MATH  Google Scholar 

  11. Chen, H., Freund, R., Ionescu, M., Pǎun, G., Pérez-Jiménez, M.: On string languages generated by spiking neural P systems. Fundam. Informaticae 75(1), 141–162 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Pǎun, G., Pérez-Jiménez, M., Rozenberg, G.: Spike trains in spiking neural P systems. Int. J. Found. Comput. Sci. 17(4), 975–1002 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, J., Hoogeboom, H.J., Pan, L., Pǎun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with weights. Neural Comput. 22(10), 2615–2646 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Zeng, X., Zhang, X., Song, T., Pan, L.: Spiking neural P systems with thresholds. Neural Comput. 26(7), 1340–1361 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pan, L., Zeng, X., Zhang, X., Jiang, Y.: Spiking neural P systems with weighted synapses. Neural Process. Lett. 35(1), 13–27 (2012)

    Article  Google Scholar 

  16. Zeng, X., Pan, L., Pérez-Jiménez, M.J.: Small universal simple spiking neural P systems with weights. Sci. China Inf. Sci. 57(9), 1–11 (2014)

    Article  MathSciNet  Google Scholar 

  17. Zhang, X., Zeng, X., Pan, L.: Weighted spiking neural P systems with rules on synapses. Fundam. Informaticae 134(1–2), 201–218 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Zeng, X., Xu, L., Liu, X., Pan, L.: On languages generated by spiking neural P systems with weights. Inf. Sci. 278(10), 423–433 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Song, T., Pan, L., Pǎun, G.: Spiking neural P systems with rules on synapses. Theor. Comput. Sci. 529(4), 82–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Song, T., Xu, J., Pan, L.: On the universality and non-universality of spiking neural P systems with rules on synapses. IEEE Trans. Nanobiosci. 14(8), 960–966 (2015)

    Article  Google Scholar 

  21. Song, T., Pan, L.: Spiking neural P systems with rules on synapses working in maximum spiking strategy. Theor. Comput. Sci. 14(1), 38–44 (2015)

    Google Scholar 

  22. Pan, L., Pǎun, G.: Spiking neural P systems with anti-spikes. Int. J. Comput. Commun. Control IV(3), 273–282 (2009)

    Article  Google Scholar 

  23. Krithivasan, K., Metta, V.P., Garg, D.: On string languages generated by spiking neural P systems with anti-spikes. Int. J. Found. Comput. Sci. 22(1), 15–27 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pan, L., Wang, J., Hoogeboom, H.J.: Spiking neural P systems with astrocytes. Neural Comput. 24(3), 805–825 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Song, T., Gong, F., Liu, X., Zhao, Y., Zhang, X.: Spiking neural P systems with white hole neurons. IEEE Trans. Nanobiosci. 15(7), 666–673 (2016)

    Article  Google Scholar 

  26. Zhang, X., Pan, L., Pǎun, A.: On the universality of axon P systems. IEEE Trans. Neural Netw. Learn. Syst. 26(11), 2816–2829 (2015)

    Article  MathSciNet  Google Scholar 

  27. Zeng, X., Zhang, X., Pan, L.: Homogeneous spiking neural P systems. Fundam. Informaticae 97(1), 275–294 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Song, T., Wang, X., Zhang, Z., Chen, Z.: Homogeneous spiking neural P systems with anti-spikes. Neural Comput. Appl. 24(7–8), 1833–1841 (2014)

    Article  Google Scholar 

  29. Jiang, K., Chen, W., Zhang, Y., Pan, L.: Spiking neural P systems with homogeneous neurons and synapses. Neurocomputing 171(C), 1548–1555 (2015)

    Google Scholar 

  30. Song, T., Zheng, P., Wong, M.L.D., Wang, X.: Design of logic gates using spiking neural P systems with homogeneous neurons and astrocytes-like control. Inf. Sci. 372, 380–391 (2016)

    Article  Google Scholar 

  31. Ibarra, O.H., Pǎun, A., Rodríguez-Patón, A.: Sequential SNP systems based on min/max spike number. Theor. Comput. Sci. 410(30), 2982–2991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Song, T., Pan, L., Jiang, K., Song, B., Chen, W.: Normal forms for some classes of sequential spiking neural P systems. IEEE Trans. NanoBiosci. 12(3), 255–264 (2013)

    Article  Google Scholar 

  33. Zhang, X., Zeng, X., Luo, B., Pan, L.: On some classes of sequential spiking neural P systems. Neural Comput. 26(5), 974–997 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, X., Luo, B., Fang, X., Pan, L.: Sequential spiking neural P systems with exhaustive use of rules. BioSystems 108(1–3), 52–62 (2012)

    Article  Google Scholar 

  35. Cavaliere, M., Ibarra, O.H., Pǎun, G., Egecioglu, O., Ionescu, M., Woodworth, S.: Asynchronous spiking neural P systems. Theor. Comput. Sci. 410(24), 2352–2364 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Song, T., Pan, L., Pǎun, G.: Asynchronous spiking neural P systems with local synchronization. Inf. Sci. 219(24), 197–207 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Song, T., Zou, Q., Liu, X., Zeng, X.: Asynchronous spiking neural P systems with rules on synapses. Neurocomputing 151(3), 1439–1445 (2015)

    Article  Google Scholar 

  38. Peng, H., Wang, J., Pérez-Jiménez, M.J., Wang, H., Shao, J., Wang, T.: Fuzzy reasoning spiking neural P system for fault diagnosis. Inf. Sci. 235(6), 106–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, J., Peng, H.: Adaptive fuzzy spiking neural P systems for fuzzy inference and learning. Int. J. Comput. Math. 90(4), 857–868 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, T., Zhang, G., Zhao, J., He, Z., Wang, J., Pérez-Jiménez, M.J.: Fault diagnosis of electric power systems based on fuzzy reasoning spiking neural P systems. IEEE Trans. Power Syst. 30(3), 1182–1194 (2015)

    Article  Google Scholar 

  41. Tu, M., Wang, J., Peng, H., Shi, P.: Application of adaptive fuzzy spiking neural P systems in fault diagnosis of power systems. Chin. J. Electron. 23(1), 87–92 (2014)

    Google Scholar 

  42. Wang, T., Zhang, G., Pérez-Jiménez, M.J., Cheng, J.: Weighted fuzzy reasoning spiking neural P systems: application to fault diagnosis in traction power supply systems of high-speed railways. J. Comput. Theor. Nanosci. 12(7), 1103–1114 (2015)

    Article  Google Scholar 

  43. Wang, J., Shi, P., Peng, H., Pérez-Jiménez, M.J., Wang, T.: Weighted fuzzy spiking neural P systems. IEEE Trans. Fuzzy Syst. 21(2), 209–220 (2013)

    Article  Google Scholar 

  44. Wang, T., Zhang, G., Pérez-Jiménez, M.J.: Fuzzy membrane computing: theory and applications. Int. J. Comput. Commun. Control 10(6), 904–935 (2015)

    Google Scholar 

  45. Díaz-Pernil, D., Peńa-Cantillana, F., Gutiérrez-Naranjo, M.A.: A parallel algorithm for skeletonizing images by using spiking neural P systems. Neurocomputing 115, 81–91 (2013)

    Article  Google Scholar 

  46. Zhang, G., Rong, H., Neri, F., Pérez-Jiménez, M.J.: An optimization spiking neural P system for approximately solving combinatorial optimization problems. Int. J. Neural Syst. 24(5), 1440006 (2014)

    Article  Google Scholar 

  47. Ishdorj, T.O., Leporati, A., Pan, L., Zeng, X., Zhang, X.: Deterministic solutions to QSAT and Q3SAT by spiking neural P systems with pre-computed resources. Theor. Comput. Sci. 411(25), 2345–2358 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Leporati, A., Mauri, G., Zandron, C., Pǎun, G., Pérez-Jiménez, M.J.: Uniform solutions to SAT and Subset Sum by spiking neural P systems. Nat. Comput. 8(4), 681–702 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pan, L., Pǎun, G., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron division and budding. Sci. China Inf. Sci. 54(8), 1596–1607 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  50. Peng, H., Yang, J., Wang, J., Wang, T., Sun, Z., Song, X., Lou, X., Huang, X.: Spiking neural P systems with multiple channels. Neural Netw. 95, 66–71 (2017)

    Article  Google Scholar 

  51. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages. Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-59136-5

    Book  MATH  Google Scholar 

  52. Korec, I.: Small universal register machines. Theor. Comput. Sci. 168(2), 267–301 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  53. Wu, T., Zhang, Z., Pǎun, G., Pan, L.: Cell-like spiking neural P systems. Theor. Comput. Sci. 623(11), 180–189 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiao Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, X. et al. (2019). On Small Universality of Spiking Neural P Systems with Multiple Channels. In: Hinze, T., Rozenberg, G., Salomaa, A., Zandron, C. (eds) Membrane Computing. CMC 2018. Lecture Notes in Computer Science(), vol 11399. Springer, Cham. https://doi.org/10.1007/978-3-030-12797-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12797-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12796-1

  • Online ISBN: 978-3-030-12797-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics