Skip to main content

Applying Blockchain and Artificial Intelligence to Digital Health

  • Chapter
  • First Online:
Digital Health Entrepreneurship

Part of the book series: Health Informatics ((HI))

Abstract

During recent years, healthcare informatics has become synonymous with big data and interoperability challenges. Skilled digital health entrepreneurs, however, can turn these issues into profitable opportunities for unlocking greater value out of healthcare and adjacent industries, including pharma or insurance. Recent technology breakthroughs such as blockchain and artificial intelligence hold great promise in helping entrepreneurs tackle major healthcare challenges, such as breaking data out of silos while keeping it secure, moving data quickly through the whole value stream, and analyzing and getting insights out of huge data sets quickly and reliably. This chapter provides a brief introduction to how both blockchain and artificial intelligence work, some key use cases in healthcare where they can be leveraged, as well as critical challenges that must be overcome for the technologies to be adopted and deployed at scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nakamoto S. Bitcoin: a peer-to-peer electronic cash system. 2008.

    Google Scholar 

  2. Szabo N. Smart contracts: building blocks for digital markets. EXTROPY: The Journal of Transhumanist Thought. 1996;16.

    Google Scholar 

  3. Deloitte US. Blockchain: opportunities for health care a new model for health information exchanges. https://www2.deloitte.com/us/en/pages/public-sector/articles/blockchain-opportunities-for-health-care.html. Accessed Aug 2018.

  4. Protenus. 2017 breach barometer annual report. https://www.protenus.com/2017-breach-barometer-annual-report. Accessed Aug 2018.

  5. HIPAAJournal. At least 3.14 million healthcare records were exposed in Q2. 2018. https://www.hipaajournal.com/q2-2018-healthcare-data-breach-report/. Accessed Aug 2018.

  6. Ekblaw A. et al. A case study for blockchain in healthcare: “MedRec” prototype for electronic health records and medical research data. https://www.healthit.gov/sites/default/files/5-56-onc_blockchainchallenge_mitwhitepaper.pdf. Accessed Aug 2018.

  7. Halamka JD. The potential for blockchain to transform electronic health records. Harv Bus Rev. 2018. https://hbr.org/2017/03/the-potential-for-blockchain-to-transform-electronic-health-records. Accessed Aug 2018.

  8. Schumacher A. Blockchain & Healthcare Strategy Guide 2017: Reinventing healthcare: towards a global, blockchain-based precision medicine ecosystem. (Kindle Locations 502–507).

    Google Scholar 

  9. Cockburn R, Newton PN, Agyarko EK, Akunyili D, White NJ. The global threat of counterfeit drugs: why industry and governments must communicate the dangers. PLoS Med. 2005;2(4):e100. https://doi.org/10.1371/journal.pmed.0020100.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Swedish J. Anthem was the victim of a sophisticated cyber attack—important message from Joseph Swedish, President and CEO. https://www11.anthem.com/ca/provider/f1/s0/t0/pw_e230409.pdf. Accessed Aug 2018.

  11. IOTA. UNOPS and IOTA collaborate to bring transparency and efficiency to UN work. 2018. https://blog.iota.org/unops-and-iota-collaborate-to-bring-transparency-and-efficiency-to-un-work-e953f7736c88. Accessed Aug 2018.

  12. Consensys. The state of the ethereum network. 2018. https://media.consensys.net/the-state-of-the-ethereum-network-949332cb6895. Accessed Aug 2018.

  13. Russell S, Norvig P. Artificial intelligence: a modern approach. Upper Saddle River, NJ: Prentice Hall; 1995. p. 4182.

    Google Scholar 

  14. Shortliffe EH. A rule-based computer program for advising physicians regarding antimicrobial therapy selection. In: Proceedings of the 1974 annual ACM conference. Vol. 2. ACM; 1974.

    Google Scholar 

  15. Alexander AG, Ballou KA. Work life balance, burnout, and the electronic health record. Am J Med. 2018;131(8):857–8.

    Article  Google Scholar 

  16. Arndt BG, Beasley JW, Watkinson MD, et al. Tethered to the EHR: primary care physician workload assessment using EHR event log data and time-motion observations. Ann Fam Med. 2017;15:402–4.

    Article  Google Scholar 

  17. Dean JC, Ilvento CC. Improved cancer detection using computer-aided detection with diagnostic and screening mammography: prospective study of 104 cancers. Am J Roentgenol. 2006;187(1):20–8.

    Article  Google Scholar 

  18. Goh GB, Hodas NO, Vishnu A. Deep learning for computational chemistry. J Comput Chem. 2017;38:1291–307. https://doi.org/10.1002/jcc.24764.

    Article  CAS  PubMed  Google Scholar 

  19. Ramsundar B, et al. Is multitask deep learning practical for pharma? J Chem Inf Model. 2017;57(8):2068–76.

    Article  CAS  Google Scholar 

  20. Min X, Zeng WW, Chen N, Chen T, Jiang R. Chromatin accessibility prediction via convolutional long short-term memory networks with k-mer embedding. Bioinformatics (Oxford, England). 2017;33(14):I92–I101.

    Article  CAS  Google Scholar 

  21. Estey EP. Robotic prostatectomy: the new standard of care or a marketing success? Can Urol Assoc J. 2009;3(6):488–90.

    Article  Google Scholar 

  22. Patel VR, Thaly R, Shah K. Motivating influences for patients seeking consultation for robotic prostatectomy. In: Paper presented at the 24th WCE world congress endourology; August 17–20; Cleveland, OH; 2006.

    Google Scholar 

  23. Moustris GP, Hiridis SC, Deliparaschos KM, Konstantinidis KM. Evolution of autonomous and semi-autonomous robotic surgical systems: a review of the literature. Int J Med Robot. 2011;7:375–92. https://doi.org/10.1002/rcs.408.

    Article  CAS  PubMed  Google Scholar 

  24. Carlsson G, Campion FX. Machine intelligence for healthcare; 2017. Self published. ISBN 9781542924948.

    Google Scholar 

  25. Gagliardi F. Instance-based classifiers applied to medical databases: diagnosis and knowledge extraction. Artif Intell Med. 2011;52(3):123–39. https://doi.org/10.1016/j.artmed.2011.04.002.

    Article  PubMed  Google Scholar 

  26. Liu Qi, Vasarhelyi M. Healthcare fraud detection: a survey and a clustering model incorporating Geo-location information. In: 29th world continuous auditing and reporting symposium (29WCARS), Brisbane, Australia. 2013.

    Google Scholar 

  27. McCulloch W, Pitts W. A logical calculus of ideas immanent in nervous activity. Bull Math Biophys. 1943;5(4):115–33. https://doi.org/10.1007/BF02478259.

    Article  Google Scholar 

  28. Ravì D, et al. Deep learning for health informatics. IEEE J Biomed Health Inform. 2017;21(1):4–21. https://doi.org/10.1109/JBHI.2016.2636665.

    Article  PubMed  Google Scholar 

  29. Zhen X, Wang Z, Islam A, Bhaduri M, Chan I, Li S. Multi-scale deep networks and regression forests for direct bi-ventricular volume estimation. Med Image Anal. 2016;30:120–9.

    Article  Google Scholar 

  30. Brosch T et al. Manifold learning of brain mris by deep learning, In: Proc MICCAI; 2013. p. 633–640.

    Google Scholar 

  31. Kondo T, Ueno J, Takao S. Medical image recognition of abdominal multi-organs by hybrid multi-layered GMDH-type neural network using principal component-regression analysis. In: Proc 2nd Int Symp Comput Netw; 2014, p. 157–163.

    Google Scholar 

  32. Kondo T, Ueno J, Takao S. Medical image diagnosis of lung cancer by deep feedback GMDH-type neural network. Robot Netw Artif Life. 2016;2(4):252–7.

    Article  Google Scholar 

  33. Rose DC, Arel I, Karnowski TP, Paquit VC. Applying deeplayered clustering to mammography image analytics. In: Proceedings of the Biomedical Sciences and Engineering Conference; 2010. p. 1–4.

    Google Scholar 

  34. Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm. 2017;14(9):3098–104. https://doi.org/10.1021/acs.molpharmaceut.7b00346.

    Article  CAS  PubMed  Google Scholar 

  35. Blaschke T, Olivecrona M, Engkvist O, Bajorath J, Chen H. Application of generative autoencoder in de novo molecular design. Mol Inform. 2017. https://doi.org/10.1002/minf.201700123.

    Article  Google Scholar 

  36. Gawehn E, Hiss JA, Schneider G. Deep learning in drug discovery. Mol Inf. 2016;35:3–14. https://doi.org/10.1002/minf.201501008.

    Article  CAS  Google Scholar 

  37. Zhang S, et al. A deep learning framework for modeling structural features of rna-binding protein targets. Nucleic Acids Res. 2016;44(4):e32.

    Article  Google Scholar 

  38. Angermueller C, Lee H, Reik W, Stegle O. Accurate prediction of single-cell dna methylation states using deep learning. bioRxiv. 2016. 055715.

    Google Scholar 

  39. Alvin R, Eyal O, et al. Scalable and accurate deep learning with electronic health records. npj Digit Med. 2018;1:18.

    Google Scholar 

  40. Albert H. Corinna Fukushima Automatic Documentation of ICD Codes with Far-Field Speech Recognition, arXiv.

    Google Scholar 

  41. Hossain MS. Patient state recognition system for healthcare using speech and facial expressions. J Med Syst. 2016;40:272. https://doi.org/10.1007/s10916-016-0627-x.

    Article  PubMed  Google Scholar 

  42. Zeng M. et al. Convolutional Neural Networks for human activity recognition using mobile sensors. In: 6th international conference on mobile computing, applications and services, Austin, TX; 2014. p. 197–205. https://doi.org/10.4108/icst.mobicase.2014.257786.

  43. Zou B, Lampos V, Gorton R, Cox IJ. On infectious intestinal disease surveillance using social media content. In: Proceedings of the 6th International Conference on Digital Health Conference; 2016. p. 157–61.

    Google Scholar 

  44. Martis RJ, Rajendra Acharya U, Mandana KM, Ray AK, Chakraborty C. Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst Appl. 2012;39(14):11792–800. https://doi.org/10.1016/j.eswa.2012.04.072.

    Article  Google Scholar 

  45. Gao H, Cai JF, Shen Z, Zhao H. Robust principal component analysis-based four-dimensional computed tomography. Phys Med Biol. 2011;56(11):3181.

    Article  Google Scholar 

  46. Khedher L, Ramírez J, Górriz JM, Brahim A, Segovia F, Alzheimer’s Disease Neuroimaging Initiative. Early diagnosis of Alzheimer’s disease based on partial least squares, principal component analysis and support vector machine using segmented MRI images. Neurocomputing. 2015;151:139–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragos Ilinca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ilinca, D. (2020). Applying Blockchain and Artificial Intelligence to Digital Health. In: Wulfovich, S., Meyers, A. (eds) Digital Health Entrepreneurship. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-030-12719-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12719-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12718-3

  • Online ISBN: 978-3-030-12719-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics