Skip to main content

Sacrificial Oxidants as a Means to Study the Catalytic Activity of Water Oxidation Catalysts

  • Chapter
  • First Online:
  • 575 Accesses

Part of the book series: PoliTO Springer Series ((PTSS))

Abstract

An overview of the different sacrificial oxidants used in literature is reported, paying particular attention to the “sacrificial pair” \(\text{Ru}(\text{bpy})_{3}^{2 + } \text{/S}_{2} \text{O}_{8}^{2 - }\), a photosystem made of a Ru-dye (Tris(bipyridine)ruthenium(II) dichloride, working as “antenna” for visible light) and a final electron acceptor (i.e. the persulfate ion). Such sacrificial oxidant is one of the most common in the literature and it was used in all the experiments described in Chap. 4. Different configurations of batch reactors can be used in the sacrificial-oxidant-driven water oxidation (WO) reaction, and three of them (i.e. the Clark-electrode Cell, the Stripping Flow Reactor and the Bubbling Reactor) are described in detail. The effects of both mass transfer limitations and side reactions on the determination of the two parameters describing the activity of water oxidation catalysts (i.e. the O2 production rate and the total evolved O2) are discussed, evidencing how such undesired phenomena occur to a different extent with the three reactor configurations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Boppana VBR, Yusuf S, Hutchings GS, Jiao F (2013) Nanostructured alkaline-cation-containing δ-MnO2 for photocatalytic water oxidation. Adv Func Mater 23(7):878–884. https://doi.org/10.1002/adfm.201202141

    Article  CAS  Google Scholar 

  2. Robinson DM, Go YB, Mui M, Gardner G, Zhang Z, Mastrogiovanni D, Garfunkel E, Li J, Greenblatt M, Dismukes GC (2013) Photochemical water oxidation by crystalline polymorphs of manganese oxides: structural requirements for catalysis. J Am Chem Soc 135(9):3494–3501. https://doi.org/10.1021/ja310286h

    Article  CAS  Google Scholar 

  3. Hara M, Waraksa CC, Lean JT, Lewis BA, Mallouk TE (2000) Photocatalytic water oxidation in a buffered tris(2,2’-bipyridyl)ruthenium complex-colloidal IrO2 system. J Phys Chem A 104(22):5275–5280. https://doi.org/10.1021/jp000321x

    Article  CAS  Google Scholar 

  4. Iyer A, Del-Pilar J, King’ondu CK, Kissel E, Garces HF, Huang H, El-Sawy AM, Dutta PK, Suib SL (2012) Water oxidation catalysis using amorphous manganese oxides, octahedral molecular sieves (OMS-2), and octahedral layered (OL-1) manganese oxide structures. J Phys Chem C 116(10):6474–6483. https://doi.org/10.1021/jp2120737

    Article  CAS  Google Scholar 

  5. Harriman A, Pickering IJ, Thomas JM, Christensen PA (1988) Metal oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 84(8):2795–2806. https://doi.org/10.1039/f19888402795

    Article  CAS  Google Scholar 

  6. McCool NS, Robinson DM, Sheats JE, Dismukes GC (2011) A Co4O4 “cubane” water oxidation catalyst inspired by photosynthesis. J Am Chem Soc 133(30):11446–11449. https://doi.org/10.1021/ja203877y

    Article  CAS  Google Scholar 

  7. Zidki T, Zhang L, Shafirovich V, Lymar SV (2012) Water oxidation catalyzed by cobalt(II) adsorbed on silica nanoparticles. J Am Chem Soc 134(35):14275–14278. https://doi.org/10.1021/ja304030y

    Article  CAS  Google Scholar 

  8. Maitra U, Naidu BS, Govindaraj A, Rao CNR (2013) Importance of trivalency and the e 1g configuration in the photocatalytic oxidation of water by Mn and Co oxides. Proc Natl Acad Sci 110(29):11704–11707. https://doi.org/10.1073/pnas.1310703110

    Article  Google Scholar 

  9. Hong D, Yamada Y, Nagatomi T, Takai Y, Fukuzumi S (2012) Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O82−. J Am Chem Soc 134(48):19572–19575. https://doi.org/10.1021/ja309771h

    Article  CAS  Google Scholar 

  10. Najafpour MM, Nayeri S, Pashaei B (2011) Nano-size amorphous calcium–manganese oxide as an efficient and biomimetic water oxidizing catalyst for artificial photosynthesis: back to manganese. Dalton Trans 40(37):9374–9378. https://doi.org/10.1039/c1dt11048a

    Article  CAS  Google Scholar 

  11. Najafpour MM, Ehrenberg T, Wiechen M, Kurz P (2010) Calcium manganese(III) oxides (CaMn2O4·x H2O) as biomimetic oxygen-evolving catalysts. Angew Chem Int Ed 49(12):2233–2237. https://doi.org/10.1002/anie.200906745

    Article  CAS  Google Scholar 

  12. Boppana VBR, Jiao F (2011) Nanostructured MnO2: an efficient and robust water oxidation catalyst. Chem Commun 47(31):8973–8975. https://doi.org/10.1039/c1cc12258d

    Article  CAS  Google Scholar 

  13. Parent AR, Crabtree RH, Brudvig GW (2013) Comparison of primary oxidants for water-oxidation catalysis. Chem Soc Rev 42(6):2247–2252. https://doi.org/10.1039/c2cs35225g

    Article  CAS  Google Scholar 

  14. Limburg J, Vrettos JS, Chen H, de Paula JC, Crabtree RH, Brudvig GW (2001) Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO3)3 (terpy = 2,2’:6,2’ ‘-terpyridine). J Am Chem Soc 123(3):423–430. https://doi.org/10.1021/ja001090a

    Article  CAS  Google Scholar 

  15. Bensaid S, Melis CO, Hernández S, Armandi M, Esposito S, Saracco G, Bonelli B (2017) A simple model for a complex system: kinetics of water oxidation with the [Ru(bpy)3]2+/S2O82− photosystem as catalyzed by Mn2O3 under different illumination conditions. Chem Eng J 311:143–152

    Article  CAS  Google Scholar 

  16. Chen Tagore R, Olack G, Vrettos JS, Weng T-C, Penner-Hahn J, Crabtree RH, Brudvig GW (2007) Speciation of the catalytic oxygen evolution system: [MnIII/IV2(μ-O)2(terpy)2(H2O)2](NO3)3 + HSO5. Inorg Chem 46(1):34–43. https://doi.org/10.1021/ic060499j

    Article  CAS  Google Scholar 

  17. Parent AR, Brewster TP, De Wolf W, Crabtree RH, Brudvig GW (2012) Sodium periodate as a primary oxidant for water-oxidation catalysts. Inorg Chem 51(11):6147–6152. https://doi.org/10.1021/ic300154x

    Article  CAS  Google Scholar 

  18. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663. https://doi.org/10.1021/cr900356p

    Article  CAS  Google Scholar 

  19. Swierk JR, Mallouk TE (2013) Design and development of photoanodes for water-splitting dye-sensitized photoelectrochemical cells. Chem Soc Rev 42(6):2357–2387. https://doi.org/10.1039/c2cs35246j

    Article  CAS  Google Scholar 

  20. Youngblood WJ, Lee S-HA, Maeda K, Mallouk TE (2009) Visible light water splitting using dye-sensitized oxide semiconductors. Acc Chem Res 42(12):1966–1973. https://doi.org/10.1021/ar9002398

    Article  CAS  Google Scholar 

  21. Timpson CJ, Carter CC, Olmsted J III (1989) Mechanism of quenching of electronically excited ruthenium complexes by oxygen. J Phys Chem 93(10):4116–4120

    Article  CAS  Google Scholar 

  22. Harriman A, Richoux M-C, Christensen PA, Mosseri S, Neta P (1987) Redox reactions with colloidal metal oxides. Comparison of radiation-generated and chemically generated RuO2·2H2O. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 83(9):3001–3014. https://doi.org/10.1039/f19878303001

    Article  CAS  Google Scholar 

  23. Doyle RL, Lyons MEG (2013) An electrochemical impedance study of the oxygen evolution reaction at hydrous iron oxide in base. Phys Chem Chem Phys 15(14):5224–5237. https://doi.org/10.1039/c3cp43464h

    Article  CAS  Google Scholar 

  24. An Vlček (2000) The life and times of excited states of organometallic and coordination compounds. Coord Chem Rev 200–202:933–978. https://doi.org/10.1016/S0010-8545(00)00308-8

    Article  Google Scholar 

  25. Kaledin AL, Huang Z, Geletii YV, Lian T, Hill CL, Musaev DG (2010) Insights into photoinduced electron transfer between [Ru(bpy)3]2+ and [S2O8]2− in water: computational and experimental studies. J Phys Chem A 114(1):73–80. https://doi.org/10.1021/jp908409n

    Article  CAS  Google Scholar 

  26. Armandi M, Hernandez S, Vankova S, Zanarini S, Bonelli B, Garrone E (2013) Visible-light driven oxidation of water as catalyzed by Co-APO-5 in the presence of Ru sensitizer. ACS Catal 3(6):1272–1278. https://doi.org/10.1021/cs400067m

    Article  CAS  Google Scholar 

  27. Ottone C, Armandi M, Hernández S, Bensaid S, Fontana M, Pirri CF, Saracco G, Garrone E, Bonelli B (Accepted) Effect of surface area on the rate of photocatalytic water oxidation as promoted by different manganese oxides. Chem Eng J

    Google Scholar 

  28. Ghosh PK, Brunschwig BS, Chou M, Creutz C, Sutin N (1984) Thermal and light-induced reduction of the ruthenium complex cation Ru(bpy) 3+3 in aqueous solution. J Am Chem Soc 106(17):4772–4783. https://doi.org/10.1021/ja00329a022

    Article  CAS  Google Scholar 

  29. Stracke JJ, Finke RG (2014) Distinguishing homogeneous from heterogeneous water oxidation catalysis when beginning with polyoxometalates. ACS Catal 4(3):909–933

    Article  CAS  Google Scholar 

  30. Vickers JW, Sumliner JM, Lv H, Morris M, Geletii YV, Hill CL (2014) Collecting meaningful early-time kinetic data in homogeneous catalytic water oxidation with a sacrificial oxidant. Phys Chem Chem Phys 16(24):11942–11949

    Article  CAS  Google Scholar 

  31. Kaledin AL, Huang Z, Yin Q, Dunphy EL, Constable EC, Housecroft CE, Geletii YV, Lian T, Hill CL, Musaev DG (2010) Insights into photoinduced electron transfer between [Ru(bpy)3]2+ and [S2O8]2−: computational and experimental studies. J Phys Chem A 114(21):6284–6297

    Article  CAS  Google Scholar 

  32. Najafpour MM (2011) A soluble form of nano-sized colloidal manganese(IV) oxide as an efficient catalyst for water oxidation. Dalton Trans 40(15):3805–3807. https://doi.org/10.1039/c1dt00006c

    Article  CAS  Google Scholar 

  33. Ottone C, Armandi M, Hernández S, Bensaid S, Fontana M, Pirri CF, Saracco G, Garrone E, Bonelli B (2015) Effect of surface area on the rate of photocatalytic water oxidation as promoted by different manganese oxides. Chem Eng J 278:36–45. https://doi.org/10.1016/j.cej.2015.01.014

    Article  CAS  Google Scholar 

  34. Hernández S, Bensaid S, Armandi M, Sacco A, Chiodoni A, Bonelli B, Garrone E, Pirri CF, Saracco G (2014) A new method for studying activity and reaction kinetics of photocatalytic water oxidation systems using a bubbling reactor. Chem Eng J 238:17–26. https://doi.org/10.1016/j.cej.2013.08.094

    Article  CAS  Google Scholar 

  35. Esposito S, Bonelli B, Armandi M, Garrone E, Saracco G (2015) Nanoparticles of CoAPO-5: synthesis and comparison with microcrystalline samples. Phys Chem Chem Phys 17(16):10774–10780. https://doi.org/10.1039/c5cp00191a

    Article  CAS  Google Scholar 

  36. Thalluri SM, Martinez Suarez C, Hussain M, Hernandez S, Virga A, Saracco G, Russo N (2013) Evaluation of the parameters affecting the visible-light-induced photocatalytic activity of monoclinic BiVO4 for water oxidation. Ind Eng Chem Res 52(49):17414–17418. https://doi.org/10.1021/ie402930x

    Article  CAS  Google Scholar 

  37. Thalluri SM, Martinez Suarez C, Hernández S, Bensaid S, Saracco G, Russo N (2014) Elucidation of important parameters of BiVO4 responsible for photo-catalytic O2 evolution and insights about the rate of the catalytic process. Chem Eng J 245:124–132. https://doi.org/10.1016/j.cej.2014.02.017

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carminna Ottone .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ottone, C., Hernández, S., Armandi, M., Bonelli, B. (2019). Sacrificial Oxidants as a Means to Study the Catalytic Activity of Water Oxidation Catalysts. In: Testing Novel Water Oxidation Catalysts for Solar Fuels Production. PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-030-12712-1_3

Download citation

Publish with us

Policies and ethics