Skip to main content

miRNA Regulation of Glucose and Lipid Metabolism in Relation to Diabetes and Non-alcoholic Fatty Liver Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1134))

Abstract

Glucose and lipids are important nutrients because they provide most of the energy for the cells. A pre-translational regulation by microRNAs (miRNAs) plays a pivotal role in cellular metabolism by targeting the key rate-limiting enzymes of relevant pathways to fine-tune control of metabolic homeostasis. Aberrant expression of these miRNAs can result in an over or under expression of those key enzymes, contributing to the etiology of diabetes and non-alcoholic fatty liver disease (NAFLD). Here we discuss recent studies of various miRNAs that control insulin sensitivity, hepatic glucose production and de novo lipogenesis and how aberrant expression of these miRNAs contributes to the pathophysiology of diabetes and NAFLD in animal models. We also review the current application of circulating miRNAs as biomarkers for diagnosis or disease monitoring in diabetes and NAFLD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Han HS, Kang G, Kim JS, Choi BH, Koo SH (2016) Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med 48:e218. https://doi.org/10.1038/emm.2015.122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Petersen MC, Vatner DF, Shulman GI (2017) Regulation of hepatic glucose metabolism in health and disease. Nat Rev Endocrinol 13:572–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Campbell JE, Drucker DJ (2015) Islet α cells and glucagon-critical regulators of energy homeostasis. Nat Rev Endocrinol 11:329–338

    Article  CAS  PubMed  Google Scholar 

  4. Plum L, Belgardt BF, Brüning JC (2006) Central insulin action in energy and glucose homeostasis. J Clin Invest 116:1761–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vidal-Puig A, O’Rahilly S (2001) Controlling the glucose factory. Nature 413:125–126

    Article  CAS  PubMed  Google Scholar 

  6. Lin HV, Accili D (2011) Hormonal regulation of hepatic glucose production in health and disease. Cell Metab 14:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Muoio DM, Newgard CB (2008) Mechanisms of disease: molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 9:193–205

    Article  CAS  PubMed  Google Scholar 

  8. Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M et al (2001) Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes 50:1844–1850

    Article  CAS  PubMed  Google Scholar 

  9. Steneberg P, Sykaras AG, Backlund F, Straseviciene J, Söderström I, Edlund H (2015) Hyperinsulinemia enhances hepatic expression of the fatty acid transporter Cd36 and provokes hepatosteatosis and hepatic insulin resistance. J Biol Chem 290:19034–19043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poitout V, Robertson RP (2008) Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr Rev 29:351–366

    Article  CAS  PubMed  Google Scholar 

  11. Boucher J, Kleinridders A, Kahn CR (2014) Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 6:a009191. https://doi.org/10.1101/cshperspect.a009191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Watson RT, Pessin JE (2006) Bridging the GAP between insulin signaling and GLUT4 translocation. Trends Biochem Sci 31:215–222

    Article  CAS  PubMed  Google Scholar 

  13. Sakamoto K, Holman GD (2008) Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 295:E29–E37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    Article  CAS  PubMed  Google Scholar 

  15. Rottiers V, Näär AM (2012) MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol 13:239–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hartig SM, Hamilton MP, Bader DA, McGuire SE (2015) The miRNA interactome in metabolic homeostasis. Trends Endocrinol Metab 26:733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Vienberg S, Geiger J, Madsen S, Dalgaard LT (2017) MicroRNAs in metabolism. Acta Physiol 219:346–361

    Article  CAS  Google Scholar 

  18. Lytle JR, Yario TA, Steitz JA (2007) Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5’ UTR as in the 3’ UTR. Proc Natl Acad Sci U S A 104:9667–9672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartel DP (2018) Metazoan microRNAs. Cell 173:20–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  22. Tkach M, Théry C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164:1226–1232

    Article  CAS  PubMed  Google Scholar 

  23. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144

    Article  CAS  PubMed  Google Scholar 

  24. Vidigal JA, Ventura A (2015) The biological functions of miRNAs: lessons from in vivo studies. Trends Cell Biol 25(3):137–147

    Article  CAS  PubMed  Google Scholar 

  25. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653

    Article  CAS  PubMed  Google Scholar 

  26. Cohen AW, Combs TP, Scherer PE, Lisanti MP (2003) Role of caveolin and caveolae in insulin signaling and diabetes. Am J Physiol Endocrinol Metab 285:E1151–E1160

    Article  CAS  PubMed  Google Scholar 

  27. Zhou B, Li C, Qi W, Zhang Y, Zhang F, Wu JX et al (2012) Down-regulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 55:2032–2043

    Article  CAS  PubMed  Google Scholar 

  28. Kornfeld JW, Baitzel C, Könner AC, Nicholls HT, Vogt MC, Herrmanns K et al (2013) Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494:111–115

    Article  CAS  PubMed  Google Scholar 

  29. Guo J, Dou L, Meng X, Chen Z, Yang W, Fang W et al (2017) Hepatic MiR-291b-3p mediated glucose metabolism by directly targeting p65 to upregulate PTEN expression. Sci Rep 7:39899. https://doi.org/10.1038/srep39899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Dohm GL, Elton CW, Friedman JE, Pilch PF, Pories WJ, Atkinson SM Jr et al (1991) Decreased expression of glucose transporter in muscle from insulin-resistant patients. Am J Phys 260:E459–E463

    CAS  Google Scholar 

  31. Gaster M, Staehr P, Beck-Nielsen H, Schrøder HD, Handberg A (2001) GLUT4 is reduced in slow muscle fibers of type 2 diabetic patients: is insulin resistance in type 2 diabetes a slow, type 1 fiber disease? Diabetes 50:1324–1329

    Article  CAS  PubMed  Google Scholar 

  32. Kampmann U, Christensen B, Nielsen TS, Pedersen SB, Ørskov L, Lund S et al (2011) GLUT4 and UBC9 protein expression is reduced in muscle from type 2 diabetic patients with severe insulin resistance. PLoS One 6:e27854. https://doi.org/10.1371/journal.pone.0027854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alam F, Islam MA, Khalil MI, Gan SH (2016) Metabolic control of type 2 diabetes by targeting the GLUT4 glucose transporter: Intervention approaches. Curr Pharm Des 22:3034–3049

    Article  CAS  PubMed  Google Scholar 

  34. Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, Gamboa GM et al (2013) miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62:2278–2286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou T, Meng X, Che H, Shen N, Xiao D, Song X et al (2016) Regulation of insulin resistance by multiple miRNAs via targeting the GLUT4 signalling pathway. Cell Physiol Biochem 38:2063–2078

    Article  CAS  PubMed  Google Scholar 

  36. Wu P, Wang Q, Jiang C, Chen C, Liu Y, Chen Y et al (2018) MicroRNA-29a is involved lipid metabolism dysfunction and insulin resistance in C2C12 myotubes by targeting PPARδ. Mol Med Rep 17:8493–8501

    CAS  PubMed  Google Scholar 

  37. Massart J, Sjögren RJO, Lundell LS, Mudry JM, Franck N, O'Gorman DJ et al (2017) Altered miR-29 expression in type 2 diabetes influences glucose and lipid metabolism in skeletal muscle. Diabetes 66:1807–1818

    Article  CAS  PubMed  Google Scholar 

  38. Song H, Ding L, Zhang S, Wang W (2018) MiR-29 family members interact with SPARC to regulate glucose metabolism. Biochem Biophys Res Commun 497:667–674

    Article  CAS  PubMed  Google Scholar 

  39. Gottmann P, Ouni M, Saussenthaler S, Roos J, Stirm L, Jähnert M et al (2018) A computational biology approach of a genome-wide screen connected miRNAs to obesity and type 2 diabetes. Mol Metab 11:145–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jitrapakdee S (2012) Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol 44:33–45

    Article  CAS  PubMed  Google Scholar 

  41. Oh KJ, Han HS, Kim MJ, Koo SH (2013) Transcriptional regulators of hepatic gluconeogenesis. Arch Pharm Res 36:189–200

    Article  CAS  PubMed  Google Scholar 

  42. Wang B, Hsu SH, Frankel W, Ghoshal K, Jacob ST (2012) Stat3-mediated activation of microRNA-23a suppresses gluconeogenesis in hepatocellular carcinoma by down-regulating glucose-6-phosphatase and peroxisome proliferator-activated receptor γ, coactivator 1 α. Hepatology 56:186–197

    Article  CAS  PubMed  Google Scholar 

  43. Liang J, Liu C, Qiao A, Cui Y, Zhang H, Cui A et al (2013) MicroRNA-29a-c decrease fasting blood glucose levels by negatively regulating hepatic gluconeogenesis. J Hepatol 58:535–542

    Article  CAS  PubMed  Google Scholar 

  44. Ramírez CM, Goedeke L, Rotllan N, Yoon JH, Cirera-Salinas D, Mattison JA et al (2013) MicroRNA 33 regulates glucose metabolism. Mol Cell Biol 33:2891–2902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Fu X, Dong B, Tian Y, Lefebvre P, Meng Z, Wang X et al (2015) MicroRNA-26a regulates insulin sensitivity and metabolism of glucose and lipids. J Clin Invest 125:2497–2550

    Article  PubMed  PubMed Central  Google Scholar 

  46. Li K, Zhang J, Yu J, Liu B, Guo Y, Deng J et al (2015) MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4. J Biol Chem 290:8185–8195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhuo S, Yang M, Zhao Y, Chen X, Zhang F, Li N et al (2016) MicroRNA-451 negatively regulates hepatic glucose production and glucose homeostasis by targeting glycerol kinase-mediated gluconeogenesis. Diabetes 65:3276–3288

    Article  CAS  PubMed  Google Scholar 

  48. Langlet F, Tarbier M, Haeusler RA, Camastra S, Ferrannini E, Friedländer MR et al (2018) MicroRNA-205-5p is a modulator of insulin sensitivity that inhibits FOXO function. Mol Metab 17:49–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Postic C, Girard J (2008) Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. J Clin Invest 118:829–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhatia H, Verma G, Datta M (2014) miR-107 orchestrates ER stress induction and lipid accumulation by post-transcriptional regulation of fatty acid synthase in hepatocytes. Biochim Biophys Acta 1839:334–343

    Article  CAS  PubMed  Google Scholar 

  51. Fan J, Li H, Nie X, Yin Z, Zhao Y, Chen C et al (2017) MiR-30c-5p ameliorates hepatic steatosis in leptin receptor-deficient (db/db) mice via down-regulating FASN. Oncotarget 8:13450–13463

    PubMed  PubMed Central  Google Scholar 

  52. Guo Y, Yu J, Wang C, Li K, Liu B, Du Y et al (2017) miR-212-5p suppresses lipid accumulation by targeting FAS and SCD1. J Mol Endocrinol 59:205–217

    Article  CAS  PubMed  Google Scholar 

  53. Zhang M, Sun W, Zhou M, Tang Y (2017) MicroRNA-27a regulates hepatic lipid metabolism and alleviates NAFLD via repressing FAS and SCD1. Sci Rep 7:14493. https://doi.org/10.1038/s41598-017-15141-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vickers KC, Shoucri BM, Levin MG, Wu H, Pearson DS, Osei-Hwedieh D et al (2013) MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 57:533–542

    Article  CAS  PubMed  Google Scholar 

  55. Zhong D, Zhang Y, Zeng YJ, Gao M, Wu GZ, Hu CJ et al (2013) MicroRNA-613 represses lipogenesis in HepG2 cells by downregulating LXRα. Lipids Health Dis 12:32. https://doi.org/10.1186/1476-511X-12-32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhong D, Huang G, Zhang Y, Zeng Y, Xu Z, Zhao Y et al (2013) MicroRNA-1 and microRNA-206 suppress LXRα-induced lipogenesis in hepatocytes. Cell Signal 25:1429–1437

    Article  CAS  PubMed  Google Scholar 

  57. Xiao F, Yu J, Liu B, Guo Y, Li K, Deng J et al (2014) A novel function of microRNA 130a-3p in hepatic insulin sensitivity and liver steatosis. Diabetes 63:2631–2642

    Article  CAS  PubMed  Google Scholar 

  58. Goedeke L, Salerno A, Ramírez CM, Guo L, Allen RM, Yin X et al (2014) Long-term therapeutic silencing of miR-33 increases circulating triglyceride levels and hepatic lipid accumulation in mice. EMBO Mol Med 6:1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang XC, Zhan XR, Li XY, Yu JJ, Liu XM (2014) MicroRNA-185 regulates expression of lipid metabolism genes and improves insulin sensitivity in mice with non-alcoholic fatty liver disease. World J Gastroenterol 20:17914–17923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Meng X, Guo J, Fang W, Dou L, Li M, Huang X et al (2016) Liver MicroRNA-291b-3p promotes hepatic lipogenesis through negative regulation of adenosine 5'-monophosphate (AMP)-activated protein kinase α1. J Biol Chem 291:10625–10634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen T, Yan D, Cheng X, Ji X, Bian J, Yin W (2018) miR-1224-5p enhances hepatic lipogenesis by targeting adenosine monophosphate-activated protein kinase α1 in male mice. Endocrinology 159:2008–2021

    Article  PubMed  Google Scholar 

  62. Guo J, Fang W, Sun L, Lu Y, Dou L, Huang X et al (2016) Reduced miR-200b and miR-200c expression contributes to abnormal hepatic lipid accumulation by stimulating JUN expression and activating the transcription of srebp1. Oncotarget 7:36207–33621

    PubMed  PubMed Central  Google Scholar 

  63. Zhang ZC, Liu Y, Xiao LL, Li SF, Jiang JH, Zhao Y et al (2015) Upregulation of miR-125b by estrogen protects against non-alcoholic fatty liver in female mice. J Hepatol 63:1466–1475

    Article  CAS  PubMed  Google Scholar 

  64. Miyazaki M, Flowers MT, Sampath H, Chu K, Otzelberger C, Liu X et al (2007) Hepatic stearoyl-CoA desaturase-1 deficiency protects mice from carbohydrate-induced adiposity and hepatic steatosis. Cell Metab 6:484–496

    Article  CAS  PubMed  Google Scholar 

  65. Liu XL, Cao HX, Wang BC, Xin FZ, Zhang RN, Zhou D et al (2017) miR-192-5p regulates lipid synthesis in non-alcoholic fatty liver disease through SCD-1. World J Gastroenterol 23:8140–8151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110:483–495

    Article  CAS  PubMed  Google Scholar 

  68. Turchinovich A, Tonevitsky AG, Burwinkel B (2016) Extracellular miRNA: a collision of two paradigms. Trends Biochem Sci 41:883–892

    Article  CAS  PubMed  Google Scholar 

  69. Zhu H, Leung SW (2015) Identification of microRNA biomarkers in type 2 diabetes: a meta-analysis of controlled profiling studies. Diabetologia 58:900–911

    Article  CAS  PubMed  Google Scholar 

  70. Xu Q, Li Y, Shang YF, Wang HL, Yao MX (2015) miRNA-103: molecular link between insulin resistance and nonalcoholic fatty liver disease. World J Gastroenterol 21:511–516

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Ma E, Fu Y, Garvey WT (2018) Relationship of circulating miRNAs with insulin sensitivity and associated metabolic risk factors in humans. Metab Syndr Relat Disord 16(2):82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS et al (2011) Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13:434–446

    Article  CAS  PubMed  Google Scholar 

  73. Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H et al (2008) Up-regulated expression of microRNA- 143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun 376(4):728–732

    Article  CAS  PubMed  Google Scholar 

  74. Vatandoost N, Amini M, Iraj B, Momenzadeh S, Salehi R (2015) Dysregulated miR-103 and miR-143 expression in peripheral blood mononuclear cells from induced prediabetes and type 2 diabetes rats. Gene 572:95–100

    Article  CAS  PubMed  Google Scholar 

  75. Li B, Fan J, Chen N (2018) A novel regulator of type II diabetes: MicroRNA-143. Trends Endocrinol Metab 29:380–388

    Article  CAS  PubMed  Google Scholar 

  76. Yang Z, Chen H, Si H, Li X, Ding X, Sheng Q et al (2014) Serum miR-23a, a potential biomarker for diagnosis of pre-diabetes and type 2 diabetes. ActaDiabetol 51:823–831

    CAS  Google Scholar 

  77. Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, Prokopi M et al (2010) Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res 107:810–817

    Article  CAS  PubMed  Google Scholar 

  78. Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E et al (2014) Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 37:1375–1383

    Article  CAS  PubMed  Google Scholar 

  79. Zhang T, Li L, Shang Q, Lv C, Wang C, Su B (2015) Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun 463:60–63

    Article  CAS  PubMed  Google Scholar 

  80. Collares CV, Evangelista AF, Xavier DJ, Rassi DM, Arns T, Foss-Freitas MC et al (2013) Identifying common and specific microRNAs expressed in peripheral blood mononuclear cell of type 1, type 2, and gestational diabetes mellitus patients. BMC Res Notes 6:49194. https://doi.org/10.1186/1756-0500-6-491

    Article  CAS  Google Scholar 

  81. Osipova J, Fischer DC, Dangwal S, Volkmann I, Widera C, Schwarz K et al (2014) Diabetes-associated microRNAs in pediatric patients with type 1 diabetes mellitus: a cross-sectional cohort study. J Clin Endocrinol Metab 99:E1661–E1665

    Article  CAS  PubMed  Google Scholar 

  82. Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, Rorsman P et al (2009) miR-375 maintains normal pancreatic alpha- and beta-cell mass. Proc Natl Acad Sci U S A 106:5813–5818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Eliasson L (2017) The small RNA miR-375 –a pancreatic islet abundant miRNA withmultiple roles in endocrine beta cell function. Mol Cell Endocrinol 456:95–101

    Article  CAS  PubMed  Google Scholar 

  84. Latreille M, Herrmanns K, Renwick N, Tuschl T, Malecki MT, McCarthy MI et al (2015) miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development. J Mol Med 93:1159–1169

    Article  CAS  PubMed  Google Scholar 

  85. Higuchi C, Nakatsuka A, Eguchi J, Teshigawara S, Kanzaki M, Katayama A et al (2015) Identification of circulating miR-101, miR-375 and miR-802 as biomarkers for type 2 diabetes. Metabolism 64:489–497

    Article  CAS  PubMed  Google Scholar 

  86. Song I, Roels S, Martens GA, Bouwens L (2017) Circulating microRNA-375 as biomarker of pancreatic beta cell death and protection of beta cell mass by cytoprotective compounds. PLoS One 12:e0186480. https://doi.org/10.1371/journal.pone.0186480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lakhter AJ, Pratt RE, Moore RE, Doucette KK, Maier BF, DiMeglio LA et al (2018) Beta cell extracellular vesicle miR-21-5p cargo is increased in response to inflammatory cytokines and serves as a biomarker of type 1 diabetes. Diabetologia 61:1124–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Samandari N, Mirza AH, Nielsen LB, Kaur S, Hougaard P, Fredheim S et al (2017) Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus. Diabetologia 60:354–363

    Article  CAS  PubMed  Google Scholar 

  89. Małachowska B, Wyka K, Nowicka Z, Bartłomiejczyk MA, Młynarski W, Fendler W (2018) Temporal dynamics of serum let-7g expression mirror the decline of residual beta-cell function in longitudinal observation of children with type 1 diabetes. Pediatr Diabetes 19:1407–1415

    Article  PubMed  CAS  Google Scholar 

  90. Erener S, Marwaha A, Tan R, Panagiotopoulos C, Kieffer TJ (2017) Profiling of circulating microRNAs in children with recent onset of type 1 diabetes. JCI Insight 2:e89656. https://doi.org/10.1172/jci.insight.89656

    Article  PubMed  PubMed Central  Google Scholar 

  91. Esau C, Davis S, Murray SF, Yu XX, Pandey SK, Pear M et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    Article  CAS  PubMed  Google Scholar 

  92. Yamada H, Suzuki K, Ichino N, Ando Y, Sawada A, Osakabe K et al (2013) Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta 424:99–103

    Article  CAS  PubMed  Google Scholar 

  93. Ye D, Zhang T, Lou G, Xu W, Dong F, Chen G et al (2018) Plasma miR-17, miR-20a, miR-20b and miR-122 as potential biomarkers for diagnosis of NAFLD in type 2 diabetes mellitus patients. Life Sci 208:201–207

    Article  CAS  PubMed  Google Scholar 

  94. Becker PP, Rau M, Schmitt J, Malsch C, Hammer C et al (2015) Performance of serum microRNAs −122, −192 and −21 as biomarkers in patients with non-alcoholic steatohepatitis. PLoS One 10:e0142661. https://doi.org/10.1371/journal.pone.0142661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Salvoza NC, Klinzing DC, Gopez-Cervantes J, Baclig MO (2016) Association of circulating serum miR-34a and miR-122 with dyslipidemia among patients with non-alcoholic fatty liver disease. PLoS One 11:e0153497. https://doi.org/10.1371/journal.pone.0153497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Latorre J, Moreno-Navarrete JM, Mercader JM, Sabater M, Rovira Ò, Gironès J et al (2017) Decreased lipid metabolism but increased FA biosynthesis are coupled with changes in liver microRNAs in obese subjects with NAFLD (2017). Int J Obes 4:620–630

    Article  CAS  Google Scholar 

  97. Willeit P, Skroblin P, Moschen AR, Yin X, Kaudewitz D, Zampetaki A et al (2017) Circulating microRNA-122 is associated with the risk of new-onset metabolic syndrome and type 2 diabetes. Diabetes 66:347–357

    Article  CAS  PubMed  Google Scholar 

  98. Brandt S, Roos J, Inzaghi E, Kotnik P, Kovac J, Battelino T et al (2018) Circulating levels of miR-122 and nonalcoholic fatty liver disease in pre-pubertal obese children. Pediatr Obes 13:175–182

    Article  CAS  PubMed  Google Scholar 

  99. Huang X, Gong S, Ma Y, Cai X, Zhou L, Luo Y et al (2018) Lower circulating miR-122 level in patients with HNF1A variant-induced diabetes compared with type 2 diabetes. J Diabetes Res 2018:7842064. https://doi.org/10.1155/2018/7842064

    Article  PubMed  PubMed Central  Google Scholar 

  100. Calo N, Ramadori P, Sobolewski C, Romero Y, Maeder C et al (2016) Stress-activated miR-21/miR-21* in hepatocytes promotes lipid and glucose metabolic disorders associated with high-fat diet consumption. Gut 65:1871–1881

    Article  CAS  PubMed  Google Scholar 

  101. Rodrigues PM, Afonso MB, Simão AL, Carvalho CC, Trindade A, Duarte A et al (2017) miR-21 ablation and obeticholic acid ameliorate nonalcoholic steatohepatitis in mice. Cell Death Dis 8:e2748. https://doi.org/10.1038/cddis.2017.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Choi SE, Fu T, Seok S, Kim DH, Yu E, Lee KW et al (2013) Elevated microRNA-34a in obesity reduces NAD+ levels and SIRT1 activity by directly targeting NAMPT. Aging Cell 12:1062–1072

    Article  CAS  PubMed  Google Scholar 

  103. Ding J, Li M, Wan X, Jin X, Chen S, Yu C et al (2015) Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease. Sci Rep 5:13729. https://doi.org/10.1038/srep13729

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wen F, An C, Wu X, Yang Y, Xu J, Liu Y et al (2018) MiR-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARα pathway in HepG2 cells. Int J Biochem Cell Biol 94:133–145

    Article  CAS  PubMed  Google Scholar 

  105. Martino F, Carlomosti F, Avitabile D, Persico L, Picozza M, Barillà F et al (2015) Circulating miR-33a and miR-33b are up-regulated in familial hypercholesterolaemia in paediatric age. Clin Sci 129:963–972

    Article  CAS  Google Scholar 

  106. Du X, Yang Y, Xu C, Peng Z, Zhang M, Lei L et al (2017) Upregulation of miR-181a impairs hepatic glucose and lipid homeostasis. Oncotarget 8:91362–91378

    PubMed  PubMed Central  Google Scholar 

  107. Geng C, Dong T, Jin W, Yu B, Yin F, Peng F et al (2018) MicroRNA-98 regulates hepatic cholesterol metabolism via targeting sterol regulatory element-binding protein 2. Biochem Biophys Res Commun 504:422–442

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Thailand Research Fund (BRG6080005). The authors wish to thank Professor John Wallace, University of Adelaide, Australia for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarawut Jitrapakdee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suksangrat, T., Phannasil, P., Jitrapakdee, S. (2019). miRNA Regulation of Glucose and Lipid Metabolism in Relation to Diabetes and Non-alcoholic Fatty Liver Disease. In: Guest, P. (eds) Reviews on Biomarker Studies of Metabolic and Metabolism-Related Disorders. Advances in Experimental Medicine and Biology(), vol 1134. Springer, Cham. https://doi.org/10.1007/978-3-030-12668-1_7

Download citation

Publish with us

Policies and ethics