Skip to main content

Complementarity and Stochastic Independence

  • Chapter
  • First Online:
Analysis and Operator Theory

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 146))

  • 807 Accesses

Abstract

A mathematical approach to the notion of complementarity in quantum physics is described and its historical development is shortly reviewed. After that, the notion of n-complementarity is introduced as a natural extension of complementarity and at the same time as weak form of stochastic independence. Several examples in which n-complementarity is realized but not independence are produced. The construction of these examples is based on the structure of Interacting Fock Space (IFS) that is strictly related to the classical theory of orthogonal polynomials. A brief description of both this notion and this connection is included to make the paper self-contained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Accardi, L.: Some trends and problems in quantum probability. In: Accardi, L., Frigerio, A., Gorini, V. (eds.) Quantum Probability and Applications to the Quantum Theory of Irreversible Processes, Proceedings of 2-d Conference: Quantum Probability and Applications to the Quantum Theory of Irreversible Processes Villa Mondragone (Rome), vol. 9, pp. 6–11 (1982), Springer LNM, vol. 1055, pp. 1–19. Springer, Berlin (1984)

    Google Scholar 

  2. Accardi, L., Bach, A.: Central limits of squeezing operator. In: Accardi, L., von Waldenfels, W. (eds.) Quantum Probability and Applications IV. Springer LNM, vol. 1396, pp. 7–19. Springer, Berlin (1987)

    Google Scholar 

  3. Accardi, L., Barhoumi, A., Dhahri, A.: Identification of the theory of orthogonal polynomials in \(d\)-indeterminates with the theory of \(3\)-diagonal symmetric interacting Fock spaces on \({\mathbb{C}^d}\). Infin. Dimens. Anal. Quantum Probab. Relat. Top. (IDA-QP) 20(1), 1–55 (2017) August (2015), revised 25 Jan 2016

    Google Scholar 

  4. Accardi, L., Crismale, V., Lu, Y.G.: Constructive universal central limit theorems based on interacting Fock spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. (IDA-QP) 8(4), 631–650 (2005). Preprint Volterra vol. 591 (2005)

    Google Scholar 

  5. Accardi, L., Kuo, H.-H., Stan, A.: Characterization of probability measures through the canonically associated interacting Fock spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top. (IDA-QP) 7, 485–505 (2004)

    Google Scholar 

  6. Accardi, L., Lu, Y.G.: The quantum moment problem for a classical random variable and a classification of interacting Fock spaces, to be submitted to (2017)

    Google Scholar 

  7. Accardi, L., Lu, Y.G., Mastropietro, V.: Stochastic bosonization for a \(d\ge 3\) Fermi system. Annales de l’Inst. Henri Poincaré 66(2), 185–213 (1997). Preprint Volterra vol. 205 (1995)

    Google Scholar 

  8. Accardi, L., Lu, Y.G., Volovich, I.V.: Quantum Theory and Its Stochastic Limit. Springer, Berlin (2002)

    Google Scholar 

  9. Accardi, L., Lu, Y.G., Volovich, I.: The QED Hilbert Module and Interacting Fock Spaces. Publications of IIAS (Kyoto), N1997–008 (1997)

    Google Scholar 

  10. Arecchi, F.T., Courtens, E., Gilmore, R., Thomas, H.: Atomic coherent states in quantum optics. Phys. Rev. A 6, 2211–2237 (1972)

    Google Scholar 

  11. Björck, G.: Functions of modulus \(1\) on \(Z_n\), whose Fourier transforms have constant modulus, and cyclic \(n\)–roots. Recent Advances in Fourier Analysis and Its Applications. NATO, Advance Science Institutes Series C, Mathematical and Physical Sciences, vol. 315, pp. 131–140. Kluwer Academic Publisher, Netherlands (1990)

    Google Scholar 

  12. Busch, P., Lahti, P.J.: To what extent do position and momentum commute? Phys. Lett. A 115(6), 259–264 (1986)

    Google Scholar 

  13. Cassinelli, G., Varadarajan, V.S.: On Accardi’s notion of complementary observables. Infin. Dimens. Anal. Quantum Probab. Relat. Top. (IDAQP) 5(2), 135–144 (2002)

    Google Scholar 

  14. Conway, J.B.: A Course in Functional Analysis. Springer, Berlin (1985)

    Google Scholar 

  15. Haagerup, U.: Cyclic \(p\)–roots of prime length \(p\) and related complex Hadamard matrices (2008). arXiv:0803.2629 [math.AC]. Revised version arXiv:0803.2629v1 [math.AC]

  16. Ivonovic, I.D.: Geometrical description of quantal state determination. J. Phys. A Math. Gen 14, 3241 (1981)

    Google Scholar 

  17. Jammer, M.: The Conceptual Development of Quantum Mechanics. McGraw-Hill, New York (1966)

    Google Scholar 

  18. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1967)

    Google Scholar 

  19. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987)

    Google Scholar 

  20. Lu, Y.G.: Interacting Fock space related to the Anderson model. Infin. Dimens. Anal. Quantum Probab. Relat. Top. (IDAQP) 1(2), 247–283 (1998)

    Google Scholar 

  21. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60(12), 1103–1106 (1988)

    Google Scholar 

  22. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Texts and Monographs in Physics. Springer, Berlin (1993)

    Google Scholar 

  23. Parthasarathy, K.R.: On estimating the state of a finite level quantum system. Infin. Dimens. Anal. Quantum. Probab. Relat. Top. (IDAQP) 7(4), 607–617 (2004)

    Google Scholar 

  24. Petz, D., Ruppert, L.: Efficient quantum tomography needs complementary and symmetric measurements. Rep. Math. Phys. 69(2), 161–177 (2012)

    Google Scholar 

  25. Popa, S.: Orthogonal pairs of \(*\)-sub-algebras in finite von Neumann algebras. J. Oper. Theory 9, 253–268 (1983)

    Google Scholar 

  26. Renyi, A.: Foundations of Probability. Holden-Day, San Francisco (1970)

    Google Scholar 

  27. Schwinger, J.: Unitary operator bases. Proc. Natl. Acad. Sci. 46, 570–579 (1960)

    Google Scholar 

  28. Tadej, W., Zyczkowski, K.: A concise guide to complex Hadamard matrices. Open Syst. Inf. Dyn. 13(2), 133–177 (2006)

    Google Scholar 

  29. von Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton (1955)

    Google Scholar 

  30. Wootters, W.K., Fields, B.D.: On the U.V. mutually unbiased bases. Ann. Phys. 191, 363 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Gang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Accardi, L., Lu, YG. (2019). Complementarity and Stochastic Independence. In: Rassias, T.M., Zagrebnov, V.A. (eds) Analysis and Operator Theory . Springer Optimization and Its Applications, vol 146. Springer, Cham. https://doi.org/10.1007/978-3-030-12661-2_1

Download citation

Publish with us

Policies and ethics