Context Hiding Multi-key Linearly Homomorphic Authenticators

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11405)


Demanding computations are increasingly outsourced to cloud platforms. For such outsourced computations, the efficient verifiability of results is a crucial requirement. When sensitive data is involved, the verification of a computation should preserve the privacy of the input values: it should be context hiding. Context hiding verifiability is enabled by existing homomorphic authenticator schemes. However, until now, no context hiding homomorphic authenticator scheme supports multiple independent clients, e.g. multiple keys. Multi-key support is necessary for datasets involving input authenticated by different clients, e.g. multiple hospitals in e-health scenarios. In this paper, we propose the first perfectly context hiding, publicly verifiable multi-key homomorphic authenticator scheme supporting linear functions. Our scheme is provably unforgeable in the standard model, and succinct. Verification time depends only linearly on the number of clients, in an amortized sense.


Delegated computation Homomorphic authenticators Context hiding 



This work has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 644962.


  1. 1.
    Agrawal, S., Boneh, D., Boyen, X., Freeman, D.M.: Preventing pollution attacks in multi-source network coding. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 161–176. Springer, Heidelberg (2010). Scholar
  2. 2.
    Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011). Scholar
  3. 3.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012). Scholar
  4. 4.
    Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013). Scholar
  5. 5.
    Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: ACM CCS 2013, pp. 863–874. ACM (2013)Google Scholar
  6. 6.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011). Scholar
  7. 7.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009). Scholar
  8. 8.
    Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: constructions and applications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015). Scholar
  9. 9.
    Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014). Scholar
  10. 10.
    Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013). Scholar
  11. 11.
    Demirel, D., Schabhüser, L., Buchmann, J.: Privately and Publicly Verifiable Computing Techniques. SCS. Springer, Cham (2017). Scholar
  12. 12.
    Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 499–530. Springer, Heidelberg (2016). Scholar
  13. 13.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012). Scholar
  14. 14.
    Goldwasser, S., Micali, S., Yao, A.C.: Strong Signature Schemes. In: STOC 1983, pp. 431–439. ACM (1983)Google Scholar
  15. 15.
    Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC 2015, pp. 469–477. ACM (2015)Google Scholar
  16. 16.
    Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015). Scholar
  17. 17.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002). Scholar
  18. 18.
    Lai, R.W.F., Tai, R.K.H., Wong, H.W.H., Chow, S.S.M.: Multi-key homomorphic signatures unforgeable under insider corruption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 465–492. Springer, Cham (2018). Scholar
  19. 19.
    Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010). Scholar
  20. 20.
    Schabhüser, L., Buchmann, J., Struck, P.: A linearly homomorphic signature scheme from weaker assumptions. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 261–279. Springer, Cham (2017). Scholar
  21. 21.
    Schabhüser, L., Butin, D., Buchmann, J.: Context hiding multi-key linearly homomorphic authenticators. Cryptology ePrint Archive, Report 2018/629 (2018).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations