Advertisement

Context Hiding Multi-key Linearly Homomorphic Authenticators

  • Lucas SchabhüserEmail author
  • Denis Butin
  • Johannes Buchmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11405)

Abstract

Demanding computations are increasingly outsourced to cloud platforms. For such outsourced computations, the efficient verifiability of results is a crucial requirement. When sensitive data is involved, the verification of a computation should preserve the privacy of the input values: it should be context hiding. Context hiding verifiability is enabled by existing homomorphic authenticator schemes. However, until now, no context hiding homomorphic authenticator scheme supports multiple independent clients, e.g. multiple keys. Multi-key support is necessary for datasets involving input authenticated by different clients, e.g. multiple hospitals in e-health scenarios. In this paper, we propose the first perfectly context hiding, publicly verifiable multi-key homomorphic authenticator scheme supporting linear functions. Our scheme is provably unforgeable in the standard model, and succinct. Verification time depends only linearly on the number of clients, in an amortized sense.

Keywords

Delegated computation Homomorphic authenticators Context hiding 

Notes

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 644962.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X., Freeman, D.M.: Preventing pollution attacks in multi-source network coding. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 161–176. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-13013-7_10CrossRefGoogle Scholar
  2. 2.
    Attrapadung, N., Libert, B.: Homomorphic network coding signatures in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 17–34. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_2CrossRefGoogle Scholar
  3. 3.
    Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: new privacy definitions and constructions. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 367–385. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-34961-4_23CrossRefGoogle Scholar
  4. 4.
    Attrapadung, N., Libert, B., Peters, T.: Efficient completely context-hiding quotable and linearly homomorphic signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 386–404. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_24CrossRefGoogle Scholar
  5. 5.
    Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on outsourced data. In: ACM CCS 2013, pp. 863–874. ACM (2013)Google Scholar
  6. 6.
    Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19379-8_1CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Freeman, D., Katz, J., Waters, B.: Signing a linear subspace: signature schemes for network coding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 68–87. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00468-1_5CrossRefGoogle Scholar
  8. 8.
    Catalano, D., Fiore, D., Nizzardo, L.: Programmable hash functions go private: constructions and applications to (homomorphic) signatures with shorter public keys. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9216, pp. 254–274. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-48000-7_13CrossRefGoogle Scholar
  9. 9.
    Catalano, D., Fiore, D., Warinschi, B.: Homomorphic signatures with efficient verification for polynomial functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 371–389. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_21CrossRefGoogle Scholar
  10. 10.
    Choi, S.G., Katz, J., Kumaresan, R., Cid, C.: Multi-client non-interactive verifiable computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 499–518. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36594-2_28CrossRefGoogle Scholar
  11. 11.
    Demirel, D., Schabhüser, L., Buchmann, J.: Privately and Publicly Verifiable Computing Techniques. SCS. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-53798-6CrossRefGoogle Scholar
  12. 12.
    Fiore, D., Mitrokotsa, A., Nizzardo, L., Pagnin, E.: Multi-key homomorphic authenticators. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 499–530. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_17CrossRefGoogle Scholar
  13. 13.
    Freeman, D.M.: Improved security for linearly homomorphic signatures: a generic framework. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 697–714. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-30057-8_41CrossRefGoogle Scholar
  14. 14.
    Goldwasser, S., Micali, S., Yao, A.C.: Strong Signature Schemes. In: STOC 1983, pp. 431–439. ACM (1983)Google Scholar
  15. 15.
    Gorbunov, S., Vaikuntanathan, V., Wichs, D.: Leveled fully homomorphic signatures from standard lattices. In: STOC 2015, pp. 469–477. ACM (2015)Google Scholar
  16. 16.
    Gordon, S.D., Katz, J., Liu, F.-H., Shi, E., Zhou, H.-S.: Multi-client verifiable computation with stronger security guarantees. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 144–168. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46497-7_6CrossRefGoogle Scholar
  17. 17.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45760-7_17CrossRefGoogle Scholar
  18. 18.
    Lai, R.W.F., Tai, R.K.H., Wong, H.W.H., Chow, S.S.M.: Multi-key homomorphic signatures unforgeable under insider corruption. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11273, pp. 465–492. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-03329-3_16CrossRefGoogle Scholar
  19. 19.
    Libert, B., Yung, M.: Concise mercurial vector commitments and independent zero-knowledge sets with short proofs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 499–517. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_30CrossRefGoogle Scholar
  20. 20.
    Schabhüser, L., Buchmann, J., Struck, P.: A linearly homomorphic signature scheme from weaker assumptions. In: O’Neill, M. (ed.) IMACC 2017. LNCS, vol. 10655, pp. 261–279. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71045-7_14CrossRefzbMATHGoogle Scholar
  21. 21.
    Schabhüser, L., Butin, D., Buchmann, J.: Context hiding multi-key linearly homomorphic authenticators. Cryptology ePrint Archive, Report 2018/629 (2018). https://eprint.iacr.org/2018/629

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Lucas Schabhüser
    • 1
    Email author
  • Denis Butin
    • 1
  • Johannes Buchmann
    • 1
  1. 1.Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations