Aoki, K., et al.: Camellia: a 128-bit block cipher suitable for multiple platforms—design andanalysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44983-3_4
CrossRef
Google Scholar
Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference, pp. 175:1–175:6. ACM (2015)
Google Scholar
Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_20
CrossRef
Google Scholar
Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks. IACR Cryptology ePrint Archive 2018, 1067 (2018)
Google Scholar
Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: New attacks on Feistel structures with improved memory complexities. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 433–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_21
CrossRef
Google Scholar
Dong, X., Dong, B., Wang, X.: Quantum attacks on some Feistel block ciphers. IACR Cryptology ePrint Archive 2018, 504 (2018)
Google Scholar
Dong, X., Li, Z., Wang, X.: Quantum cryptanalysis on some generalized Feistel schemes. IACR Cryptology ePrint Archive 2017, 1249 (2017)
Google Scholar
Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. IACR Cryptology ePrint Archive 2017, 1199 (2017)
Google Scholar
Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L. (ed.) STOC 1996, pp. 212–219. ACM (1996)
Google Scholar
Guo, J., Jean, J., Nikolić, I., Sasaki, Y.: Meet-in-the-middle attacks on generic Feistel constructions. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 458–477. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_24
CrossRef
Google Scholar
Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_21
CrossRef
Google Scholar
Isobe, T., Shibutani, K.: Generic key recovery attack on Feistel scheme. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8269, pp. 464–485. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42033-7_24
CrossRef
Google Scholar
Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Y., Iwata, T.: Quantum chosen-ciphertext attacks against Feistel ciphers. IACR Cryptology ePrint Archive 2018, 1193 (2018). Full version of this paper
Google Scholar
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8
CrossRef
Google Scholar
Knudsen, L.R.: The security of Feistel ciphers with six rounds or less. J. Cryptol. 15(3), 207–222 (2002)
MathSciNet
CrossRef
Google Scholar
Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: ISIT 2010, pp. 2682–2685. IEEE (2010)
Google Scholar
Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: ISITA 2012, pp. 312–316. IEEE (2012)
Google Scholar
Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_6
CrossRef
Google Scholar
Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudorandom functions. SIAM J. Comput. 17(2), 373–386 (1988)
MathSciNet
CrossRef
Google Scholar
National Bureau of Standards: Data encryption standard. FIPS 46, January 1977
Google Scholar
Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)
MathSciNet
Google Scholar
Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: an ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_23
CrossRef
Google Scholar
Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)
MathSciNet
CrossRef
Google Scholar
Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 287–314. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12
CrossRef
Google Scholar
Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_16
CrossRef
Google Scholar