Abstract
Most existing studies on evolutionary multi-objective optimisation (EMO) focus on approximating the whole Pareto-optimal front. Nevertheless, rather than the whole front, which demands for too many points (especially when having many objectives), a decision maker (DM) might only be interested in a partial region, called the region of interest (ROI). Solutions outside this ROI can be noisy to the decision making procedure. Even worse, there is no guarantee that we can find DM preferred solutions when tackling problems with complicated properties or a large number of objectives. In this paper, we use the state-of-the-art MOEA/D as the baseline and develop its interactive version that is able to find solutions preferred by the DM in a progressive manner. Specifically, after every several generations, the DM is asked to score a limited number of candidates. Then, an approximated value function, which models the DM’s preference information, is learned from the scoring results. Thereafter, the learned preference information is used to obtain a set of weight vectors biased towards the ROI. Note that these weight vectors are thus used in the baseline MOEA/D to search for DM preferred solutions. Proof-of-principle results on 3- to 10-objective test problems demonstrate the effectiveness of our proposed method.
Supported by Royal Society under grant IEC/NSFC/170243.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theor. Comput. Sci. 425, 75–103 (2012)
Battiti, R., Passerini, A.: Brain-computer evolutionary multiobjective optimization: a genetic algorithm adapting to the decision maker. IEEE Trans. Evol. Comput. 14(5), 671–687 (2010)
Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chapter four - preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-art. Adv. Comput. 98, 141–207 (2015)
Branke, J., Deb, K.: Integrating user preferences into evolutionary multi-objective optimization. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, vol. 167, pp. 461–477. Springer, Berlin (2005). https://doi.org/10.1007/978-3-540-44511-1_21
Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)
Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 1–34 (1994)
Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26, 30–45 (1996)
Deb, K., Sundar, J., Bhaskara, U., Chaudhuri, S.: Reference point based multiobjective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2(3), 273–286 (2006)
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6
Jin, Y., Okabe, T., Sendho, B.: Adapting weighted aggregation for multiobjective evolution strategies. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 96–110. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_7
Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition multiobjective optimization. IEEE Trans. Cybern. 48(12), 3359–3370 (2018)
Li, K., Deb, K., Yao, X.: R-metric: evaluating the performance of preference-based evolutionary multi-objective optimization using reference points. IEEE Trans. Evol. Comput. (2017). accepted for publication
Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)
Li, K., Fialho, Á., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)
Li, K., Kwong, S., Zhang, Q., Deb, K.: Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans. Cybern. 45(10), 2076–2088 (2015)
Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching based selection in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 18(6), 909–923 (2014)
Parmee, I.C., Cvetkovic, D.: Preferences and their application in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 6(1), 42–57 (2002)
Said, L.B., Bechikh, S., Ghédira, K.: The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans. Evolut. Comput. 14(5), 801–818 (2010)
Wagner, T., Trautmann, H., Brockhoff, D.: Preference articulation by means of the R2 indicator. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 81–95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-0_10
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)
Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, K. (2019). Progressive Preference Learning: Proof-of-Principle Results in MOEA/D. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_50
Download citation
DOI: https://doi.org/10.1007/978-3-030-12598-1_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-12597-4
Online ISBN: 978-3-030-12598-1
eBook Packages: Computer ScienceComputer Science (R0)