Skip to main content

Progressive Preference Learning: Proof-of-Principle Results in MOEA/D

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Included in the following conference series:

Abstract

Most existing studies on evolutionary multi-objective optimisation (EMO) focus on approximating the whole Pareto-optimal front. Nevertheless, rather than the whole front, which demands for too many points (especially when having many objectives), a decision maker (DM) might only be interested in a partial region, called the region of interest (ROI). Solutions outside this ROI can be noisy to the decision making procedure. Even worse, there is no guarantee that we can find DM preferred solutions when tackling problems with complicated properties or a large number of objectives. In this paper, we use the state-of-the-art MOEA/D as the baseline and develop its interactive version that is able to find solutions preferred by the DM in a progressive manner. Specifically, after every several generations, the DM is asked to score a limited number of candidates. Then, an approximated value function, which models the DM’s preference information, is learned from the scoring results. Thereafter, the learned preference information is used to obtain a set of weight vectors biased towards the ROI. Note that these weight vectors are thus used in the baseline MOEA/D to search for DM preferred solutions. Proof-of-principle results on 3- to 10-objective test problems demonstrate the effectiveness of our proposed method.

Supported by Royal Society under grant IEC/NSFC/170243.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://uk.mathworks.com/help/nnet/ug/radial-basis-neural-networks.html.

  2. 2.

    https://coda-group.github.io/emo19-supp.pdf.

References

  1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Hypervolume-based multiobjective optimization: theoretical foundations and practical implications. Theor. Comput. Sci. 425, 75–103 (2012)

    Article  MathSciNet  Google Scholar 

  2. Battiti, R., Passerini, A.: Brain-computer evolutionary multiobjective optimization: a genetic algorithm adapting to the decision maker. IEEE Trans. Evol. Comput. 14(5), 671–687 (2010)

    Article  Google Scholar 

  3. Bechikh, S., Kessentini, M., Said, L.B., Ghédira, K.: Chapter four - preference incorporation in evolutionary multiobjective optimization: a survey of the state-of-the-art. Adv. Comput. 98, 141–207 (2015)

    Article  Google Scholar 

  4. Branke, J., Deb, K.: Integrating user preferences into evolutionary multi-objective optimization. In: Jin, Y. (ed.) Knowledge Incorporation in Evolutionary Computation, vol. 167, pp. 461–477. Springer, Berlin (2005). https://doi.org/10.1007/978-3-540-44511-1_21

    Chapter  Google Scholar 

  5. Buhmann, M.D.: Radial Basis Functions. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  6. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)

    Article  MathSciNet  Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 1–34 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Comput. Sci. Inform. 26, 30–45 (1996)

    Google Scholar 

  10. Deb, K., Sundar, J., Bhaskara, U., Chaudhuri, S.: Reference point based multiobjective optimization using evolutionary algorithms. Int. J. Comput. Intell. Res. 2(3), 273–286 (2006)

    Article  MathSciNet  Google Scholar 

  11. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Advanced Information and Knowledge Processing, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  12. Jin, Y., Okabe, T., Sendho, B.: Adapting weighted aggregation for multiobjective evolution strategies. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne, D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 96–110. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44719-9_7

    Chapter  Google Scholar 

  13. Li, K., Chen, R., Min, G., Yao, X.: Integration of preferences in decomposition multiobjective optimization. IEEE Trans. Cybern. 48(12), 3359–3370 (2018)

    Article  Google Scholar 

  14. Li, K., Deb, K., Yao, X.: R-metric: evaluating the performance of preference-based evolutionary multi-objective optimization using reference points. IEEE Trans. Evol. Comput. (2017). accepted for publication

    Google Scholar 

  15. Li, K., Deb, K., Zhang, Q., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)

    Article  Google Scholar 

  16. Li, K., Fialho, Á., Kwong, S., Zhang, Q.: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 18(1), 114–130 (2014)

    Article  Google Scholar 

  17. Li, K., Kwong, S., Zhang, Q., Deb, K.: Interrelationship-based selection for decomposition multiobjective optimization. IEEE Trans. Cybern. 45(10), 2076–2088 (2015)

    Article  Google Scholar 

  18. Li, K., Zhang, Q., Kwong, S., Li, M., Wang, R.: Stable matching based selection in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 18(6), 909–923 (2014)

    Article  Google Scholar 

  19. Parmee, I.C., Cvetkovic, D.: Preferences and their application in evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 6(1), 42–57 (2002)

    Article  Google Scholar 

  20. Said, L.B., Bechikh, S., Ghédira, K.: The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans. Evolut. Comput. 14(5), 801–818 (2010)

    Article  Google Scholar 

  21. Wagner, T., Trautmann, H., Brockhoff, D.: Preference articulation by means of the R2 indicator. In: Purshouse, R.C., Fleming, P.J., Fonseca, C.M., Greco, S., Shaw, J. (eds.) EMO 2013. LNCS, vol. 7811, pp. 81–95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37140-0_10

    Chapter  Google Scholar 

  22. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11, 712–731 (2007)

    Article  Google Scholar 

  23. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, K. (2019). Progressive Preference Learning: Proof-of-Principle Results in MOEA/D. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics