Skip to main content

A Formal Model for Multi-objective Optimisation of Network Function Virtualisation Placement

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Included in the following conference series:

Abstract

Ranging from web caches to firewalls, network functions play a critical role in modern networks. Network function virtualisation (NFV) has gained significant interests from both industry and academia, thus making the study of their placement an active research topic. Due to multiple criteria that must be considered by stake holders, e.g. the minimisation of the end-to-end latency and overall energy consumption, the NFV placement problem is in principle a multi-objective optimisation problem. This paper develops a formal model for the NFV placement problem based on queuing theory. By using the popular NSGA-II as the optimiser, the effectiveness of the proposed model is validated through a series of proof-of-concept experiments. In particular, some genetic operators have been developed to match the characteristics of the problem.

Supported by EPSRC Industrial CASE and British Telecom under grant 16000177.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armbrust, M., et al.: Above the clouds: a berkeley view of cloud computing (2009)

    Google Scholar 

  2. Bari, M.F., Chowdhury, S.R., Ahmed, R., Boutaba, R.: On orchestrating virtual network functions. In: 11th International Conference on Network and Service Management, CNSM 2015, pp. 50–56 (2015)

    Google Scholar 

  3. Bizanis, N., Kuipers, F.A.: SDN and virtualization solutions for the internet of things: a survey. IEEE Access 4, 5591–5606 (2016)

    Article  Google Scholar 

  4. Cisco: Cisco global cloud index: forecast and methodology, 2016–2021 (2018). Accessed 03 Oct 2018

    Google Scholar 

  5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Fischer, A., Botero, J.F., Beck, M.T., de Meer, H., Hesselbach, X.: Virtual network embedding: a survey. IEEE Commun. Surv. Tutor. 15(4), 1888–1906 (2013)

    Article  Google Scholar 

  7. Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization: challenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015)

    Article  Google Scholar 

  8. Kleinrock, L.: Queueing Systems: Theory, vol. 1. Wiley, Hoboken (1975)

    MATH  Google Scholar 

  9. Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., Turck, F.D., Davy, S.: Design and evaluation of algorithms for mapping and scheduling of virtual network functions. In: Proceedings of the 1st IEEE Conference on Network Softwarization, NetSoft 2015, London, United Kingdom, 13–17 April 2015, pp. 1–9 (2015)

    Google Scholar 

  10. Pei, X., et al.: Network functions virtualisation - white paper on NFV priorities for 5G (2017)

    Google Scholar 

  11. Reichert, C.: 5G industry to be worth \$1.2 trillion by 2026: ericsson. ZDNet, February 2017. Accessed 03 Oct 2018

    Google Scholar 

  12. Shehabi, A., et al.: United States data center energy usage report (2016)

    Google Scholar 

  13. Xu, J., Fortes, J.A.B.: A multi-objective approach to virtual machine management in datacenters. In: 8th International Conference on Autonomic Computing, ICAC 2011, pp. 225–234 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph Billingsley , Ke Li , Wang Miao , Geyong Min or Nektarios Georgalas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Billingsley, J., Li, K., Miao, W., Min, G., Georgalas, N. (2019). A Formal Model for Multi-objective Optimisation of Network Function Virtualisation Placement. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics