Skip to main content

A Formal Model for Multi-objective Optimisation of Network Function Virtualisation Placement

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 11411)

Abstract

Ranging from web caches to firewalls, network functions play a critical role in modern networks. Network function virtualisation (NFV) has gained significant interests from both industry and academia, thus making the study of their placement an active research topic. Due to multiple criteria that must be considered by stake holders, e.g. the minimisation of the end-to-end latency and overall energy consumption, the NFV placement problem is in principle a multi-objective optimisation problem. This paper develops a formal model for the NFV placement problem based on queuing theory. By using the popular NSGA-II as the optimiser, the effectiveness of the proposed model is validated through a series of proof-of-concept experiments. In particular, some genetic operators have been developed to match the characteristics of the problem.

Keywords

  • Network function virtualisation
  • Multi-objective optimisation
  • Telecommunications
  • Queueing theory

Supported by EPSRC Industrial CASE and British Telecom under grant 16000177.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-12598-1_42
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-12598-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

References

  1. Armbrust, M., et al.: Above the clouds: a berkeley view of cloud computing (2009)

    Google Scholar 

  2. Bari, M.F., Chowdhury, S.R., Ahmed, R., Boutaba, R.: On orchestrating virtual network functions. In: 11th International Conference on Network and Service Management, CNSM 2015, pp. 50–56 (2015)

    Google Scholar 

  3. Bizanis, N., Kuipers, F.A.: SDN and virtualization solutions for the internet of things: a survey. IEEE Access 4, 5591–5606 (2016)

    CrossRef  Google Scholar 

  4. Cisco: Cisco global cloud index: forecast and methodology, 2016–2021 (2018). Accessed 03 Oct 2018

    Google Scholar 

  5. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    CrossRef  Google Scholar 

  6. Fischer, A., Botero, J.F., Beck, M.T., de Meer, H., Hesselbach, X.: Virtual network embedding: a survey. IEEE Commun. Surv. Tutor. 15(4), 1888–1906 (2013)

    CrossRef  Google Scholar 

  7. Han, B., Gopalakrishnan, V., Ji, L., Lee, S.: Network function virtualization: challenges and opportunities for innovations. IEEE Commun. Mag. 53(2), 90–97 (2015)

    CrossRef  Google Scholar 

  8. Kleinrock, L.: Queueing Systems: Theory, vol. 1. Wiley, Hoboken (1975)

    MATH  Google Scholar 

  9. Mijumbi, R., Serrat, J., Gorricho, J., Bouten, N., Turck, F.D., Davy, S.: Design and evaluation of algorithms for mapping and scheduling of virtual network functions. In: Proceedings of the 1st IEEE Conference on Network Softwarization, NetSoft 2015, London, United Kingdom, 13–17 April 2015, pp. 1–9 (2015)

    Google Scholar 

  10. Pei, X., et al.: Network functions virtualisation - white paper on NFV priorities for 5G (2017)

    Google Scholar 

  11. Reichert, C.: 5G industry to be worth \$1.2 trillion by 2026: ericsson. ZDNet, February 2017. Accessed 03 Oct 2018

    Google Scholar 

  12. Shehabi, A., et al.: United States data center energy usage report (2016)

    Google Scholar 

  13. Xu, J., Fortes, J.A.B.: A multi-objective approach to virtual machine management in datacenters. In: 8th International Conference on Autonomic Computing, ICAC 2011, pp. 225–234 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joseph Billingsley , Ke Li , Wang Miao , Geyong Min or Nektarios Georgalas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Billingsley, J., Li, K., Miao, W., Min, G., Georgalas, N. (2019). A Formal Model for Multi-objective Optimisation of Network Function Virtualisation Placement. In: , et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)