Skip to main content

On Timing the Nadir-Point Estimation and/or Termination of Reference-Based Multi- and Many-objective Evolutionary Algorithms

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Included in the following conference series:

Abstract

There is considerable evidence that the Multi- and Many-objective Evolutionary Algorithms (jointly referred as MâOEAs, here) are mostly run for arbitrarily fixed number of generations. The absence of any justification for the same raises more questions than answers, and it is plausible to infer that the choices made for different problems coincide with the best-observed results. Reference-based MâOEAs (RMâOEAs) are a prominently emerging class of MâOEAs, where the diversity maintenance is assisted by externally provided reference vectors or points. However, the performance of most existing RMâOEAs is impacted by the efficacy with which the population is normalized along the search. This paper presents a novel and computationally efficient Termination Algorithm which under different parameter settings (strong and mild) not only determines the appropriate timing for RMâOEAs’ termination but also the intermittent timings at which the population ought to be normalized. The proposed Algorithm can be tuned to integrate with different RMâOEAs. An instance of it is demonstrated here, with respect to NSGA-III. Experimental Results on the call for final termination of NSGA-III have been validated through Hypervolume measures. The results also establish that the performance of NSGA-III could be improved just by changing the frequency of Nadir-point estimates (used for population normalization). While several efforts have been made on how to estimate the Nadir-point, this to the best of the authors’ knowledge is one of the rarest studies that explores when to estimate the Nadir-point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code used can be found at: https://esa.github.io/pagmo2/.

References

  1. Asafuddoula, M., Ray, T., Sarker, R.: A decomposition-based evolutionary algorithm for many objective optimization. IEEE Trans. Evol. Comput. 19(3), 445–460 (2015)

    Article  Google Scholar 

  2. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014). https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  3. Deb, K., Miettinen, K.: A review of nadir point estimation procedures using evolutionary approaches: a tale of dimensionality reduction. In: Multiple Criterion Decision Making (MCDM) Conference, pp. 1–14. Springer, Berlin (2008)

    Google Scholar 

  4. Deb, K., Saxena, D.K.: Searching for Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. In: IEEE Congress on Evolutionary Computation, pp. 3353–3360 (2006)

    Google Scholar 

  5. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Abraham, A., Jain, R., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization: Theoretical Advances and Applications. AI&KP, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6

    Chapter  MATH  Google Scholar 

  6. Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley, New York (2001)

    MATH  Google Scholar 

  7. Duro, J.A., Saxena, D.K.: Timing the decision support for real-world many-objective optimization problems. In: Trautmann, H., et al. (eds.) EMO 2017. LNCS, vol. 10173, pp. 191–205. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54157-0_14

    Chapter  Google Scholar 

  8. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477–506 (2006)

    Article  Google Scholar 

  9. Hughes, E.J.: Evolutionary many-objective optimisation: many once or one many? In: IEEE Congress on Evolutionary Computation, pp. 222–227 (2005)

    Google Scholar 

  10. Jain, H., Deb, K.: An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: handling constraints and extending to an adaptive approach. IEEE Trans. Evol. Comput. 18(4), 602–622 (2014). https://doi.org/10.1109/TEVC.2013.2281534

    Article  Google Scholar 

  11. Khare, V., Yao, X., Deb, K.: Performance scaling of multi-objective evolutionary algorithms. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 376–390. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_27

    Chapter  MATH  Google Scholar 

  12. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans. Evol. Comput. 13(2), 284–302 (2009). https://doi.org/10.1109/TEVC.2008.925798

    Article  Google Scholar 

  13. Marti, L., Garcia, J., Berlanga, A., Molina, J.M.: A stopping criterion for multi-objective optimization evolutionary algorithms. Inf. Sci. 367–368, 700–718 (2016)

    Article  Google Scholar 

  14. Saxena, D., Duro, J., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evol. Comput. 17(1), 77–99 (2013)

    Article  Google Scholar 

  15. Saxena, D.K., Sinha, A., Duro, J.A., Zhang, Q.: Entropy-based termination criterion for multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 20(4), 485–498 (2016)

    Article  Google Scholar 

  16. Trautmann, H., Wagner, T., Naujoks, B., Preuss, M., Mehnen, J.: Statistical methods for convergence detection of multi-objective evolutionary algorithms. Evol. Comput. 17(4), 493–509 (2009). https://doi.org/10.1162/evco.2009.17.4.17403. pMID: 19916777

    Article  Google Scholar 

  17. Wagner, T., Trautmann, H., Martí, L.: A taxonomy of online stopping criteria for multi-objective evolutionary algorithms. In: Takahashi, R.H.C., Deb, K., Wanner, E.F., Greco, S. (eds.) EMO 2011. LNCS, vol. 6576, pp. 16–30. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19893-9_2

    Chapter  Google Scholar 

  18. Wang, R., Zhang, Q., Zhang, T.: Decomposition-based algorithms using Pareto adaptive scalarizing methods. IEEE Trans. Evol. Comput. 20(6), 821–837 (2016)

    Article  Google Scholar 

  19. Yuan, Y., Xu, H., Wang, B.: An improved NSGA-III procedure for evolutionary many-objective optimization. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, GECCO 2014, pp. 661–668. ACM, New York (2014)

    Google Scholar 

  20. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhish Kumar Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saxena, D.K., Kapoor, S. (2019). On Timing the Nadir-Point Estimation and/or Termination of Reference-Based Multi- and Many-objective Evolutionary Algorithms. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics