Skip to main content

Abstract

This chapter covers various mathematical theories which can be used in data compression techniques. The information and properties of various image transforms are discussed in this chapter. The description of compressive sensing (CS) theory, image compression standard for medical images, and performance evaluation parameters for compression method are also covered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fourier, J. (1822). Analytical theory of heat, by M. Fourier. At Firmin Didot, father, and son.

    Google Scholar 

  2. Shih, F. Y. (2017). Digital watermarking and steganography: Fundamentals and techniques. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  3. Brigham, E. O., & Brigham, E. O. (1988). The fast Fourier transform and its applications (Vol. 448). Englewood Cliffs, NJ: Prentice Hall.

    MATH  Google Scholar 

  4. Jain, A. (1999). Fundamentals of digital image processing (pp. 151–153). New Jersey: Prentice Hall Inc.

    Google Scholar 

  5. Lopez, R., & Boulgouris, N. (2010). Compressive sensing and combinatorial algorithms for image compression. A project report. London: King’s College.

    Google Scholar 

  6. Gonzalez, R. C., & Woods, R. E. (2002). Digital image processing. Upper Saddle River, NJ: Pearson-Prentice-Hall.

    Google Scholar 

  7. Mertins, A., & Mertins, D. A. (1999). Signal analysis: Wavelets, filter banks, time-frequency transforms and applications. John Wiley & Sons, Inc. USA.

    Google Scholar 

  8. Thanki, R. M., Dwivedi, V. J., & Borisagar, K. R. (2018). Multibiometric watermarking with compressive sensing theory: Techniques and applications. Springer, Germany.

    Book  Google Scholar 

  9. Candès, E. J. (2006, August). Compressive sampling. In Proceedings of the international congress of mathematicians (Vol. 3, pp. 1433–1452). Madrid, Spain.

    Google Scholar 

  10. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  Google Scholar 

  11. Baraniuk, R. G. (2007). Compressive sensing [lecture notes]. IEEE Signal Processing Magazine, 24(4), 118–121.

    Article  Google Scholar 

  12. Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on information theory, 53(12), 4655–4666. Dai, W., & Milenkovic, O. (2009). Subspace pursuit for compressive sensing signal reconstruction. IEEE Transactions on Information Theory, 55(5), 2230–2249.

    Article  MathSciNet  Google Scholar 

  13. Needell, D. (2009). Topics in compressed sensing Ph. D (Doctoral dissertation, Dissertation).

    Google Scholar 

  14. Duarte, M. F., & Eldar, Y. C. (2011). Structured compressed sensing: From theory to applications. IEEE Transactions on Signal Processing, 59(9), 4053–4085.

    Article  MathSciNet  Google Scholar 

  15. Uthayakumar, J., Vengattaraman, T., & Dhavachelvan, P. (2018). A survey on data compression techniques: From the perspective of data quality, coding schemes, data type, and applications. Journal of King Saud University-Computer and Information Sciences.

    Google Scholar 

  16. Chandler, D. M., & Hemami, S. S. (2007). VSNR: A wavelet-based visual signal-to-noise ratio for natural images. IEEE Transactions on Image Processing, 16(9), 2284–2298.

    Article  MathSciNet  Google Scholar 

  17. Elshaikh, M., Fadzil, M. F. M., Kamel, N., & Isa, C. M. N. C. (2012, March). Weighted signal-to-noise ratio average routing metric for dynamic sequence distance vector routing protocol in mobile ad-hoc networks. In Signal Processing and its Applications (CSPA), 2012 IEEE 8th International Colloquium on (pp. 329–334). IEEE.

    Google Scholar 

  18. Damera-Venkata, N., Kite, T. D., Geisler, W. S., Evans, B. L., & Bovik, A. C. (2000). Image quality assessment based on a degradation model. IEEE Transactions on Image Processing, 9(4), 636–650.

    Article  Google Scholar 

  19. Wang, Z., & Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.

    Article  Google Scholar 

  20. Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003, November). Multiscale structural similarity for image quality assessment. In the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003 (Vol. 2, pp. 1398–1402). IEEE.

    Google Scholar 

  21. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13(4), 600–612.

    Article  Google Scholar 

  22. Zhang, L., Zhang, L., Mou, X., & Zhang, D. (2011). FSIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20(8), 2378–2386.

    Article  MathSciNet  Google Scholar 

  23. Zhang, L., & Li, H. (2012, September). SR-SIM: A fast and high performance IQA index based on spectral residual. In Image Processing (ICIP), 2012 19th IEEE International Conference on (pp. 1473–1476). IEEE.

    Google Scholar 

  24. Reisenhofer, R., Bosse, S., Kutyniok, G., & Wiegand, T. (2018). A Haar wavelet-based perceptual similarity index for image quality assessment. Signal Processing: Image Communication, 61, 33–43.

    Google Scholar 

  25. Berger, T. (1971). Rate distortion theory: A mathematical basis for data compression. London: Prentice Hall.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thanki, R.M., Kothari, A. (2019). Mathematical Preliminaries. In: Hybrid and Advanced Compression Techniques for Medical Images. Springer, Cham. https://doi.org/10.1007/978-3-030-12575-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12575-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12574-5

  • Online ISBN: 978-3-030-12575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics