Skip to main content

Computational Number Theory in Relation with L-Functions

  • Chapter
  • First Online:
Notes from the International Autumn School on Computational Number Theory


We give a number of theoretical and practical methods related to the computation of L-functions, both in the local case (counting points on varieties over finite fields, involving in particular a detailed study of Gauss and Jacobi sums), and in the global case (for instance, Dirichlet L-functions, involving in particular the study of inverse Mellin transforms); we also give a number of little-known but very useful numerical methods, usually but not always related to the computation of L-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. 1.

    The definition of J given below is a sum over all \(x\in {\mathbb F}_q\), so that \(J(\varepsilon ,\varepsilon )=q^2\) and not \((q-2)^2\).


  1. N. Bourbaki, Développement tayloriens généralisés. Formule sommatoire d’Euler–MacLaurin, Fonctions d’une variable réelle, Chap. 6.

    Google Scholar 

  2. H. Cohen, A Course in Computational Algebraic Number Theory (fourth corrected printing), Graduate Texts in Math. 138, Springer, 2000.

    Google Scholar 

  3. H. Cohen, Number Theory I, Tools and Diophantine Equations, Graduate Texts in Math. 239, Springer, 2007.

    Google Scholar 

  4. H. Cohen, Number Theory II, Analytic and Modern Tools, Graduate Texts in Math. 240, Springer, 2007.

    Google Scholar 

  5. H. Cohen, A\(p\)-adic stationary phase theorem and applications, preprint.

    Google Scholar 

  6. H. Cohen and F. Strömberg, Modular Forms: A Classical Approach, Graduate Studies in Math. 179, American Math. Soc., (2017).

    Google Scholar 

  7. H. Cohen, F. Rodriguez-Villegas, and D. Zagier, Convergence acceleration of alternating series, Exp. Math. 9 (2000), 3–12.

    Article  MathSciNet  Google Scholar 

  8. H. Cohen and D. Zagier, Vanishing and nonvanishing theta values, Ann. Sci. Math. Quebec 37 (2013), pp 45–61.

    Article  Google Scholar 

  9. T. Dokchitser, Computing special values of motivic\(L\)-functions, Exp. Math. 13 (2004), 137–149.

    Google Scholar 

  10. G. Hiary, Computing Dirichlet character sums to a power-full modulus, ArXiv preprint arXiv:1205.4687v2.

  11. J.-F. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math. 58 (1986). pp. 209–232.

    MathSciNet  MATH  Google Scholar 

  12. P. Molin, Intégration numérique et calculs de fonctions\(L\), Thèse, Université Bordeaux I (2010).

    Google Scholar 

  13. M. Rubinstein, Computational methods and experiments in analytic number theory, In: Recent Perspectives in Random Matrix Theory and Number Theory, F. Mezzadri and N. Snaith, eds (2005), pp. 407–483.

    Google Scholar 

  14. H. Takashi and M. Mori, Double exponential formulas for numerical integration, Publications of RIMS, Kyoto University (1974), 9:721–741.

    Article  MathSciNet  Google Scholar 

  15. J.-P. Serre, Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange–Pisot–Poitou 11 (1969–1970), exp. 19, pp. 1–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Henri Cohen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cohen, H. (2019). Computational Number Theory in Relation with L-Functions. In: Inam, I., Büyükaşık, E. (eds) Notes from the International Autumn School on Computational Number Theory. Tutorials, Schools, and Workshops in the Mathematical Sciences . Birkhäuser, Cham.

Download citation

Publish with us

Policies and ethics